Model-based analysis of biocatalytic processes and performance of microbioreactors with integrated optical sensors

•Mechanistic models developed to describe bioprocesses inside microbioreactors.•Models allow fast identification of reaction mechanism, kinetics and limitations.•Fluid flow and enzyme adsorption affects response of optical sensor inside μBR.•Extra catalase and hydrogen peroxide in μBR disturb local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New biotechnology 2020-05, Vol.56, p.27-37
Hauptverfasser: Semenova, Daria, Fernandes, Ana C., Bolivar, Juan M., Rosinha Grundtvig, Inês P., Vadot, Barbara, Galvanin, Silvia, Mayr, Torsten, Nidetzky, Bernd, Zubov, Alexandr, Gernaey, Krist V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue
container_start_page 27
container_title New biotechnology
container_volume 56
creator Semenova, Daria
Fernandes, Ana C.
Bolivar, Juan M.
Rosinha Grundtvig, Inês P.
Vadot, Barbara
Galvanin, Silvia
Mayr, Torsten
Nidetzky, Bernd
Zubov, Alexandr
Gernaey, Krist V.
description •Mechanistic models developed to describe bioprocesses inside microbioreactors.•Models allow fast identification of reaction mechanism, kinetics and limitations.•Fluid flow and enzyme adsorption affects response of optical sensor inside μBR.•Extra catalase and hydrogen peroxide in μBR disturb local oxygen concentrations.•Framework created screening bioprocesses, sensor response and μBR designs. Design and development of scale-down approaches, such as microbioreactor (μBR) technologies with integrated sensors, are an adequate solution for rapid, high-throughput and cost-effective screening of valuable reactions and/or production strains, with considerably reduced use of reagents and generation of waste. A significant challenge in the successful and widespread application of μBRs in biotechnology remains the lack of appropriate software and automated data interpretation of μBR experiments. Here, it is demonstrated how mathematical models can be usedas helpful tools, not only to exploit the capabilities of microfluidic platforms, but also to reveal the critical experimental conditions when monitoring cascade enzymatic reactions. A simplified mechanistic model was developed to describe the enzymatic reaction of glucose oxidase and glucose in the presence of catalase inside a commercial microfluidic platform with integrated oxygen sensor spots. The proposed model allowed an easy and rapid identification of the reaction mechanism, kinetics and limiting factors. The effect of fluid flow and enzyme adsorption inside the microfluidic chip on the optical sensor response and overall monitoring capabilities of the presented platform was evaluated via computational fluid dynamics (CFD) simulations. Remarkably, the model predictions were independently confirmed for μL- and mL- scale experiments. It is expected that the mechanistic models will significantly contribute to the further promotion of μBRs in biocatalysis research and that the overall study will create a framework for screening and evaluation of critical system parameters, including sensor response, operating conditions, experimental and microbioreactor designs.
doi_str_mv 10.1016/j.nbt.2019.11.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2313382522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1871678418319770</els_id><sourcerecordid>2313382522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-c64e70b45c426a0a74c432f37aac555419cd235c3de8a4f4e6a134d375ac887b3</originalsourceid><addsrcrecordid>eNp9kU-P1DAMxSMEYpeFD8AFVeLCpSVO3KYjTmjFP2kRFzhHaeJCRm0zJBnQfns8zMKBAyfbys9PzntCPAXZgYTh5b7bptopCbsOoJMS7olLGM3QokZz_3cP7WBGvBCPStlLOcBugIfiQoORiICXIn9MgZZ2coVC4za33JZYmjQ3U0zeVZ5r9M0hJ0-lUGEkNAfKc8qr2zydyDX6nBjP5HxNuTQ_Y_3WxK3S1-wqy6YDa7ilKbQVfn8sHsxuKfTkrl6JL2_ffL5-3958evfh-vVN61Fhbf2AZOSEPY-Dk86gR61mbZzzfd8j7HxQuvc60OhwRhocaAza9M6Po5n0lXhx1uXrvx-pVLvG4mlZ3EbpWKzSoPWoeqUYff4Puk_HzG4whShxp2SPTMGZ4v-Wkmm2hxxXl28tSHsKxO4tB2JPgVgAy4HwzrM75eO0Uvi78ScBBl6dAWIrfkTKtvhIbG2ImXy1IcX_yP8CErOc-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440492054</pqid></control><display><type>article</type><title>Model-based analysis of biocatalytic processes and performance of microbioreactors with integrated optical sensors</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Semenova, Daria ; Fernandes, Ana C. ; Bolivar, Juan M. ; Rosinha Grundtvig, Inês P. ; Vadot, Barbara ; Galvanin, Silvia ; Mayr, Torsten ; Nidetzky, Bernd ; Zubov, Alexandr ; Gernaey, Krist V.</creator><creatorcontrib>Semenova, Daria ; Fernandes, Ana C. ; Bolivar, Juan M. ; Rosinha Grundtvig, Inês P. ; Vadot, Barbara ; Galvanin, Silvia ; Mayr, Torsten ; Nidetzky, Bernd ; Zubov, Alexandr ; Gernaey, Krist V.</creatorcontrib><description>•Mechanistic models developed to describe bioprocesses inside microbioreactors.•Models allow fast identification of reaction mechanism, kinetics and limitations.•Fluid flow and enzyme adsorption affects response of optical sensor inside μBR.•Extra catalase and hydrogen peroxide in μBR disturb local oxygen concentrations.•Framework created screening bioprocesses, sensor response and μBR designs. Design and development of scale-down approaches, such as microbioreactor (μBR) technologies with integrated sensors, are an adequate solution for rapid, high-throughput and cost-effective screening of valuable reactions and/or production strains, with considerably reduced use of reagents and generation of waste. A significant challenge in the successful and widespread application of μBRs in biotechnology remains the lack of appropriate software and automated data interpretation of μBR experiments. Here, it is demonstrated how mathematical models can be usedas helpful tools, not only to exploit the capabilities of microfluidic platforms, but also to reveal the critical experimental conditions when monitoring cascade enzymatic reactions. A simplified mechanistic model was developed to describe the enzymatic reaction of glucose oxidase and glucose in the presence of catalase inside a commercial microfluidic platform with integrated oxygen sensor spots. The proposed model allowed an easy and rapid identification of the reaction mechanism, kinetics and limiting factors. The effect of fluid flow and enzyme adsorption inside the microfluidic chip on the optical sensor response and overall monitoring capabilities of the presented platform was evaluated via computational fluid dynamics (CFD) simulations. Remarkably, the model predictions were independently confirmed for μL- and mL- scale experiments. It is expected that the mechanistic models will significantly contribute to the further promotion of μBRs in biocatalysis research and that the overall study will create a framework for screening and evaluation of critical system parameters, including sensor response, operating conditions, experimental and microbioreactor designs.</description><identifier>ISSN: 1871-6784</identifier><identifier>EISSN: 1876-4347</identifier><identifier>DOI: 10.1016/j.nbt.2019.11.001</identifier><identifier>PMID: 31704414</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bioprocess modeling ; Bioreactors ; Biotechnology ; Cascade chemical reactions ; Catalase ; Catalysis ; Chemical reduction ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Data interpretation ; Enzymatic biocatalysis ; Fluid dynamics ; Fluid flow ; Glucose oxidase ; Hydrodynamics ; Limiting factors ; Mathematical models ; Mechanistic modeling ; Microbioreactor ; Microfluidics ; Monitoring ; Optical measuring instruments ; Oxygen monitoring ; Oxygen probes ; Reaction kinetics ; Reaction mechanisms ; Reagents ; Screening ; Sensors</subject><ispartof>New biotechnology, 2020-05, Vol.56, p.27-37</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. May 25, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-c64e70b45c426a0a74c432f37aac555419cd235c3de8a4f4e6a134d375ac887b3</citedby><cites>FETCH-LOGICAL-c424t-c64e70b45c426a0a74c432f37aac555419cd235c3de8a4f4e6a134d375ac887b3</cites><orcidid>0000-0001-6132-8112 ; 0000-0002-9204-0979 ; 0000-0002-0364-1773 ; 0000-0003-2494-9934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nbt.2019.11.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31704414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Semenova, Daria</creatorcontrib><creatorcontrib>Fernandes, Ana C.</creatorcontrib><creatorcontrib>Bolivar, Juan M.</creatorcontrib><creatorcontrib>Rosinha Grundtvig, Inês P.</creatorcontrib><creatorcontrib>Vadot, Barbara</creatorcontrib><creatorcontrib>Galvanin, Silvia</creatorcontrib><creatorcontrib>Mayr, Torsten</creatorcontrib><creatorcontrib>Nidetzky, Bernd</creatorcontrib><creatorcontrib>Zubov, Alexandr</creatorcontrib><creatorcontrib>Gernaey, Krist V.</creatorcontrib><title>Model-based analysis of biocatalytic processes and performance of microbioreactors with integrated optical sensors</title><title>New biotechnology</title><addtitle>N Biotechnol</addtitle><description>•Mechanistic models developed to describe bioprocesses inside microbioreactors.•Models allow fast identification of reaction mechanism, kinetics and limitations.•Fluid flow and enzyme adsorption affects response of optical sensor inside μBR.•Extra catalase and hydrogen peroxide in μBR disturb local oxygen concentrations.•Framework created screening bioprocesses, sensor response and μBR designs. Design and development of scale-down approaches, such as microbioreactor (μBR) technologies with integrated sensors, are an adequate solution for rapid, high-throughput and cost-effective screening of valuable reactions and/or production strains, with considerably reduced use of reagents and generation of waste. A significant challenge in the successful and widespread application of μBRs in biotechnology remains the lack of appropriate software and automated data interpretation of μBR experiments. Here, it is demonstrated how mathematical models can be usedas helpful tools, not only to exploit the capabilities of microfluidic platforms, but also to reveal the critical experimental conditions when monitoring cascade enzymatic reactions. A simplified mechanistic model was developed to describe the enzymatic reaction of glucose oxidase and glucose in the presence of catalase inside a commercial microfluidic platform with integrated oxygen sensor spots. The proposed model allowed an easy and rapid identification of the reaction mechanism, kinetics and limiting factors. The effect of fluid flow and enzyme adsorption inside the microfluidic chip on the optical sensor response and overall monitoring capabilities of the presented platform was evaluated via computational fluid dynamics (CFD) simulations. Remarkably, the model predictions were independently confirmed for μL- and mL- scale experiments. It is expected that the mechanistic models will significantly contribute to the further promotion of μBRs in biocatalysis research and that the overall study will create a framework for screening and evaluation of critical system parameters, including sensor response, operating conditions, experimental and microbioreactor designs.</description><subject>Bioprocess modeling</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Cascade chemical reactions</subject><subject>Catalase</subject><subject>Catalysis</subject><subject>Chemical reduction</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Data interpretation</subject><subject>Enzymatic biocatalysis</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Glucose oxidase</subject><subject>Hydrodynamics</subject><subject>Limiting factors</subject><subject>Mathematical models</subject><subject>Mechanistic modeling</subject><subject>Microbioreactor</subject><subject>Microfluidics</subject><subject>Monitoring</subject><subject>Optical measuring instruments</subject><subject>Oxygen monitoring</subject><subject>Oxygen probes</subject><subject>Reaction kinetics</subject><subject>Reaction mechanisms</subject><subject>Reagents</subject><subject>Screening</subject><subject>Sensors</subject><issn>1871-6784</issn><issn>1876-4347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU-P1DAMxSMEYpeFD8AFVeLCpSVO3KYjTmjFP2kRFzhHaeJCRm0zJBnQfns8zMKBAyfbys9PzntCPAXZgYTh5b7bptopCbsOoJMS7olLGM3QokZz_3cP7WBGvBCPStlLOcBugIfiQoORiICXIn9MgZZ2coVC4za33JZYmjQ3U0zeVZ5r9M0hJ0-lUGEkNAfKc8qr2zydyDX6nBjP5HxNuTQ_Y_3WxK3S1-wqy6YDa7ilKbQVfn8sHsxuKfTkrl6JL2_ffL5-3958evfh-vVN61Fhbf2AZOSEPY-Dk86gR61mbZzzfd8j7HxQuvc60OhwRhocaAza9M6Po5n0lXhx1uXrvx-pVLvG4mlZ3EbpWKzSoPWoeqUYff4Puk_HzG4whShxp2SPTMGZ4v-Wkmm2hxxXl28tSHsKxO4tB2JPgVgAy4HwzrM75eO0Uvi78ScBBl6dAWIrfkTKtvhIbG2ImXy1IcX_yP8CErOc-A</recordid><startdate>20200525</startdate><enddate>20200525</enddate><creator>Semenova, Daria</creator><creator>Fernandes, Ana C.</creator><creator>Bolivar, Juan M.</creator><creator>Rosinha Grundtvig, Inês P.</creator><creator>Vadot, Barbara</creator><creator>Galvanin, Silvia</creator><creator>Mayr, Torsten</creator><creator>Nidetzky, Bernd</creator><creator>Zubov, Alexandr</creator><creator>Gernaey, Krist V.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6132-8112</orcidid><orcidid>https://orcid.org/0000-0002-9204-0979</orcidid><orcidid>https://orcid.org/0000-0002-0364-1773</orcidid><orcidid>https://orcid.org/0000-0003-2494-9934</orcidid></search><sort><creationdate>20200525</creationdate><title>Model-based analysis of biocatalytic processes and performance of microbioreactors with integrated optical sensors</title><author>Semenova, Daria ; Fernandes, Ana C. ; Bolivar, Juan M. ; Rosinha Grundtvig, Inês P. ; Vadot, Barbara ; Galvanin, Silvia ; Mayr, Torsten ; Nidetzky, Bernd ; Zubov, Alexandr ; Gernaey, Krist V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-c64e70b45c426a0a74c432f37aac555419cd235c3de8a4f4e6a134d375ac887b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioprocess modeling</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Cascade chemical reactions</topic><topic>Catalase</topic><topic>Catalysis</topic><topic>Chemical reduction</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Data interpretation</topic><topic>Enzymatic biocatalysis</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Glucose oxidase</topic><topic>Hydrodynamics</topic><topic>Limiting factors</topic><topic>Mathematical models</topic><topic>Mechanistic modeling</topic><topic>Microbioreactor</topic><topic>Microfluidics</topic><topic>Monitoring</topic><topic>Optical measuring instruments</topic><topic>Oxygen monitoring</topic><topic>Oxygen probes</topic><topic>Reaction kinetics</topic><topic>Reaction mechanisms</topic><topic>Reagents</topic><topic>Screening</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Semenova, Daria</creatorcontrib><creatorcontrib>Fernandes, Ana C.</creatorcontrib><creatorcontrib>Bolivar, Juan M.</creatorcontrib><creatorcontrib>Rosinha Grundtvig, Inês P.</creatorcontrib><creatorcontrib>Vadot, Barbara</creatorcontrib><creatorcontrib>Galvanin, Silvia</creatorcontrib><creatorcontrib>Mayr, Torsten</creatorcontrib><creatorcontrib>Nidetzky, Bernd</creatorcontrib><creatorcontrib>Zubov, Alexandr</creatorcontrib><creatorcontrib>Gernaey, Krist V.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>New biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Semenova, Daria</au><au>Fernandes, Ana C.</au><au>Bolivar, Juan M.</au><au>Rosinha Grundtvig, Inês P.</au><au>Vadot, Barbara</au><au>Galvanin, Silvia</au><au>Mayr, Torsten</au><au>Nidetzky, Bernd</au><au>Zubov, Alexandr</au><au>Gernaey, Krist V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-based analysis of biocatalytic processes and performance of microbioreactors with integrated optical sensors</atitle><jtitle>New biotechnology</jtitle><addtitle>N Biotechnol</addtitle><date>2020-05-25</date><risdate>2020</risdate><volume>56</volume><spage>27</spage><epage>37</epage><pages>27-37</pages><issn>1871-6784</issn><eissn>1876-4347</eissn><abstract>•Mechanistic models developed to describe bioprocesses inside microbioreactors.•Models allow fast identification of reaction mechanism, kinetics and limitations.•Fluid flow and enzyme adsorption affects response of optical sensor inside μBR.•Extra catalase and hydrogen peroxide in μBR disturb local oxygen concentrations.•Framework created screening bioprocesses, sensor response and μBR designs. Design and development of scale-down approaches, such as microbioreactor (μBR) technologies with integrated sensors, are an adequate solution for rapid, high-throughput and cost-effective screening of valuable reactions and/or production strains, with considerably reduced use of reagents and generation of waste. A significant challenge in the successful and widespread application of μBRs in biotechnology remains the lack of appropriate software and automated data interpretation of μBR experiments. Here, it is demonstrated how mathematical models can be usedas helpful tools, not only to exploit the capabilities of microfluidic platforms, but also to reveal the critical experimental conditions when monitoring cascade enzymatic reactions. A simplified mechanistic model was developed to describe the enzymatic reaction of glucose oxidase and glucose in the presence of catalase inside a commercial microfluidic platform with integrated oxygen sensor spots. The proposed model allowed an easy and rapid identification of the reaction mechanism, kinetics and limiting factors. The effect of fluid flow and enzyme adsorption inside the microfluidic chip on the optical sensor response and overall monitoring capabilities of the presented platform was evaluated via computational fluid dynamics (CFD) simulations. Remarkably, the model predictions were independently confirmed for μL- and mL- scale experiments. It is expected that the mechanistic models will significantly contribute to the further promotion of μBRs in biocatalysis research and that the overall study will create a framework for screening and evaluation of critical system parameters, including sensor response, operating conditions, experimental and microbioreactor designs.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31704414</pmid><doi>10.1016/j.nbt.2019.11.001</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6132-8112</orcidid><orcidid>https://orcid.org/0000-0002-9204-0979</orcidid><orcidid>https://orcid.org/0000-0002-0364-1773</orcidid><orcidid>https://orcid.org/0000-0003-2494-9934</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1871-6784
ispartof New biotechnology, 2020-05, Vol.56, p.27-37
issn 1871-6784
1876-4347
language eng
recordid cdi_proquest_miscellaneous_2313382522
source ScienceDirect Journals (5 years ago - present)
subjects Bioprocess modeling
Bioreactors
Biotechnology
Cascade chemical reactions
Catalase
Catalysis
Chemical reduction
Computational fluid dynamics
Computer applications
Computer simulation
Data interpretation
Enzymatic biocatalysis
Fluid dynamics
Fluid flow
Glucose oxidase
Hydrodynamics
Limiting factors
Mathematical models
Mechanistic modeling
Microbioreactor
Microfluidics
Monitoring
Optical measuring instruments
Oxygen monitoring
Oxygen probes
Reaction kinetics
Reaction mechanisms
Reagents
Screening
Sensors
title Model-based analysis of biocatalytic processes and performance of microbioreactors with integrated optical sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-based%20analysis%20of%20biocatalytic%20processes%20and%20performance%20of%20microbioreactors%20with%20integrated%20optical%20sensors&rft.jtitle=New%20biotechnology&rft.au=Semenova,%20Daria&rft.date=2020-05-25&rft.volume=56&rft.spage=27&rft.epage=37&rft.pages=27-37&rft.issn=1871-6784&rft.eissn=1876-4347&rft_id=info:doi/10.1016/j.nbt.2019.11.001&rft_dat=%3Cproquest_cross%3E2313382522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440492054&rft_id=info:pmid/31704414&rft_els_id=S1871678418319770&rfr_iscdi=true