Three-Dimensional Resonant Exciton in Monolayer Tungsten Diselenide Actuated by Spin–Orbit Coupling
The intricate features of many-body interactions and spin–orbit coupling play a significant role in numerous physical phenomena. Particularly in two-dimensional transition metal dichalcogenides (2D-TMDs), excitonic dynamics are a key phenomenon that promises opportunities for diverse range of device...
Gespeichert in:
Veröffentlicht in: | ACS nano 2019-12, Vol.13 (12), p.14529-14539 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14539 |
---|---|
container_issue | 12 |
container_start_page | 14529 |
container_title | ACS nano |
container_volume | 13 |
creator | Tang, Chi Sin Yin, Xinmao Yang, Ming Wu, Di Birowosuto, Muhammad Danang Wu, Jing Li, Changjian Hettiarachchi, Chathuranga Chin, Xin Yu Chang, Yung-Huang Ouyang, Fangping Dang, Cuong Pennycook, Stephen J Feng, Yuan Ping Wang, Shijie Chi, Dongzhi Breese, Mark B. H Zhang, Wenjing Rusydi, Andrivo Wee, Andrew T. S |
description | The intricate features of many-body interactions and spin–orbit coupling play a significant role in numerous physical phenomena. Particularly in two-dimensional transition metal dichalcogenides (2D-TMDs), excitonic dynamics are a key phenomenon that promises opportunities for diverse range of device applications. Here, we report the direct observation of a visible-range three-dimensional resonant exciton and its associated charged exciton in monolayer tungsten diselenide, as compared to monolayer molybdenum disulfide. A comprehensive experimental study that includes high-resolution TEM, Raman, high-resolution spectroscopic ellipsometry over a wide temperature range down to 4 K, high-energy temperature, and excitation power-dependent photoluminescence spectroscopy has been conducted. It is supported by first-principles calculations to unravel the influence of spin–orbit coupling in the formation of the resonant exciton and to identify its in-plane and out-of-plane features. Furthermore, we study the impact of temperature and thickness on the spin–orbit coupling strength in 2D-TMDs. This work is crucial in creating a platform in the fundamental understanding of high-energy resonant exciton in layered two-dimensional systems and that such high-energy optoelectronic features make them an increasingly attractive candidate for novel electronic and optoelectronic applications particularly in the aspects of solar cells and light-emitting diodes via the manipulation of excitonic states. |
doi_str_mv | 10.1021/acsnano.9b08385 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2313379397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313379397</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-6118621b2c3cc88f6cb4ecd0871787acfa0ee9e18621dadd1a1c930da90749563</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EoqUwsyGPSCjFjpvEHqu2_EhFlaBIbJHj3BRXiV3sRKIb78Ab8iQEGroxnTt85-jqQ-ickiElIb2Wyhtp7FBkhDMeHaA-FSwOCI9fDvd3RHvoxPs1IVHCk_gY9RhNSMgF6SNYvjqAYKorMF5bI0v8CL5NU-PZu9K1NVgb_GCNLeUWHF42ZuVrMHiqPZRgdA54rOpG1pDjbIufNtp8fXwuXKZrPLHNptRmdYqOCll6OOtygJ5vZsvJXTBf3N5PxvNAMsbqIKaUxyHNQsWU4ryIVTYClROe0PZxqQpJAAT8QrnMcyqpEozkUpBkJKKYDdDlbnfj7FsDvk4r7RWUpTRgG5-GjDKWCCaSFr3eocpZ7x0U6cbpSrptSkn64zbt3Kad27Zx0Y03WQX5nv-T2QJXO6BtpmvbuNam_3fuG5Fih00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313379397</pqid></control><display><type>article</type><title>Three-Dimensional Resonant Exciton in Monolayer Tungsten Diselenide Actuated by Spin–Orbit Coupling</title><source>American Chemical Society Journals</source><creator>Tang, Chi Sin ; Yin, Xinmao ; Yang, Ming ; Wu, Di ; Birowosuto, Muhammad Danang ; Wu, Jing ; Li, Changjian ; Hettiarachchi, Chathuranga ; Chin, Xin Yu ; Chang, Yung-Huang ; Ouyang, Fangping ; Dang, Cuong ; Pennycook, Stephen J ; Feng, Yuan Ping ; Wang, Shijie ; Chi, Dongzhi ; Breese, Mark B. H ; Zhang, Wenjing ; Rusydi, Andrivo ; Wee, Andrew T. S</creator><creatorcontrib>Tang, Chi Sin ; Yin, Xinmao ; Yang, Ming ; Wu, Di ; Birowosuto, Muhammad Danang ; Wu, Jing ; Li, Changjian ; Hettiarachchi, Chathuranga ; Chin, Xin Yu ; Chang, Yung-Huang ; Ouyang, Fangping ; Dang, Cuong ; Pennycook, Stephen J ; Feng, Yuan Ping ; Wang, Shijie ; Chi, Dongzhi ; Breese, Mark B. H ; Zhang, Wenjing ; Rusydi, Andrivo ; Wee, Andrew T. S</creatorcontrib><description>The intricate features of many-body interactions and spin–orbit coupling play a significant role in numerous physical phenomena. Particularly in two-dimensional transition metal dichalcogenides (2D-TMDs), excitonic dynamics are a key phenomenon that promises opportunities for diverse range of device applications. Here, we report the direct observation of a visible-range three-dimensional resonant exciton and its associated charged exciton in monolayer tungsten diselenide, as compared to monolayer molybdenum disulfide. A comprehensive experimental study that includes high-resolution TEM, Raman, high-resolution spectroscopic ellipsometry over a wide temperature range down to 4 K, high-energy temperature, and excitation power-dependent photoluminescence spectroscopy has been conducted. It is supported by first-principles calculations to unravel the influence of spin–orbit coupling in the formation of the resonant exciton and to identify its in-plane and out-of-plane features. Furthermore, we study the impact of temperature and thickness on the spin–orbit coupling strength in 2D-TMDs. This work is crucial in creating a platform in the fundamental understanding of high-energy resonant exciton in layered two-dimensional systems and that such high-energy optoelectronic features make them an increasingly attractive candidate for novel electronic and optoelectronic applications particularly in the aspects of solar cells and light-emitting diodes via the manipulation of excitonic states.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b08385</identifier><identifier>PMID: 31702890</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2019-12, Vol.13 (12), p.14529-14539</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-6118621b2c3cc88f6cb4ecd0871787acfa0ee9e18621dadd1a1c930da90749563</citedby><cites>FETCH-LOGICAL-a333t-6118621b2c3cc88f6cb4ecd0871787acfa0ee9e18621dadd1a1c930da90749563</cites><orcidid>0000-0001-9562-1595 ; 0000-0003-2190-2284 ; 0000-0002-8246-4444 ; 0000-0002-0876-1221 ; 0000-0002-9997-6841 ; 0000-0001-6183-4082 ; 0000-0002-3210-6323 ; 0000-0002-5828-4312 ; 0000-0001-6931-900X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.9b08385$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.9b08385$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31702890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Chi Sin</creatorcontrib><creatorcontrib>Yin, Xinmao</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Birowosuto, Muhammad Danang</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Li, Changjian</creatorcontrib><creatorcontrib>Hettiarachchi, Chathuranga</creatorcontrib><creatorcontrib>Chin, Xin Yu</creatorcontrib><creatorcontrib>Chang, Yung-Huang</creatorcontrib><creatorcontrib>Ouyang, Fangping</creatorcontrib><creatorcontrib>Dang, Cuong</creatorcontrib><creatorcontrib>Pennycook, Stephen J</creatorcontrib><creatorcontrib>Feng, Yuan Ping</creatorcontrib><creatorcontrib>Wang, Shijie</creatorcontrib><creatorcontrib>Chi, Dongzhi</creatorcontrib><creatorcontrib>Breese, Mark B. H</creatorcontrib><creatorcontrib>Zhang, Wenjing</creatorcontrib><creatorcontrib>Rusydi, Andrivo</creatorcontrib><creatorcontrib>Wee, Andrew T. S</creatorcontrib><title>Three-Dimensional Resonant Exciton in Monolayer Tungsten Diselenide Actuated by Spin–Orbit Coupling</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The intricate features of many-body interactions and spin–orbit coupling play a significant role in numerous physical phenomena. Particularly in two-dimensional transition metal dichalcogenides (2D-TMDs), excitonic dynamics are a key phenomenon that promises opportunities for diverse range of device applications. Here, we report the direct observation of a visible-range three-dimensional resonant exciton and its associated charged exciton in monolayer tungsten diselenide, as compared to monolayer molybdenum disulfide. A comprehensive experimental study that includes high-resolution TEM, Raman, high-resolution spectroscopic ellipsometry over a wide temperature range down to 4 K, high-energy temperature, and excitation power-dependent photoluminescence spectroscopy has been conducted. It is supported by first-principles calculations to unravel the influence of spin–orbit coupling in the formation of the resonant exciton and to identify its in-plane and out-of-plane features. Furthermore, we study the impact of temperature and thickness on the spin–orbit coupling strength in 2D-TMDs. This work is crucial in creating a platform in the fundamental understanding of high-energy resonant exciton in layered two-dimensional systems and that such high-energy optoelectronic features make them an increasingly attractive candidate for novel electronic and optoelectronic applications particularly in the aspects of solar cells and light-emitting diodes via the manipulation of excitonic states.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EoqUwsyGPSCjFjpvEHqu2_EhFlaBIbJHj3BRXiV3sRKIb78Ab8iQEGroxnTt85-jqQ-ickiElIb2Wyhtp7FBkhDMeHaA-FSwOCI9fDvd3RHvoxPs1IVHCk_gY9RhNSMgF6SNYvjqAYKorMF5bI0v8CL5NU-PZu9K1NVgb_GCNLeUWHF42ZuVrMHiqPZRgdA54rOpG1pDjbIufNtp8fXwuXKZrPLHNptRmdYqOCll6OOtygJ5vZsvJXTBf3N5PxvNAMsbqIKaUxyHNQsWU4ryIVTYClROe0PZxqQpJAAT8QrnMcyqpEozkUpBkJKKYDdDlbnfj7FsDvk4r7RWUpTRgG5-GjDKWCCaSFr3eocpZ7x0U6cbpSrptSkn64zbt3Kad27Zx0Y03WQX5nv-T2QJXO6BtpmvbuNam_3fuG5Fih00</recordid><startdate>20191224</startdate><enddate>20191224</enddate><creator>Tang, Chi Sin</creator><creator>Yin, Xinmao</creator><creator>Yang, Ming</creator><creator>Wu, Di</creator><creator>Birowosuto, Muhammad Danang</creator><creator>Wu, Jing</creator><creator>Li, Changjian</creator><creator>Hettiarachchi, Chathuranga</creator><creator>Chin, Xin Yu</creator><creator>Chang, Yung-Huang</creator><creator>Ouyang, Fangping</creator><creator>Dang, Cuong</creator><creator>Pennycook, Stephen J</creator><creator>Feng, Yuan Ping</creator><creator>Wang, Shijie</creator><creator>Chi, Dongzhi</creator><creator>Breese, Mark B. H</creator><creator>Zhang, Wenjing</creator><creator>Rusydi, Andrivo</creator><creator>Wee, Andrew T. S</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9562-1595</orcidid><orcidid>https://orcid.org/0000-0003-2190-2284</orcidid><orcidid>https://orcid.org/0000-0002-8246-4444</orcidid><orcidid>https://orcid.org/0000-0002-0876-1221</orcidid><orcidid>https://orcid.org/0000-0002-9997-6841</orcidid><orcidid>https://orcid.org/0000-0001-6183-4082</orcidid><orcidid>https://orcid.org/0000-0002-3210-6323</orcidid><orcidid>https://orcid.org/0000-0002-5828-4312</orcidid><orcidid>https://orcid.org/0000-0001-6931-900X</orcidid></search><sort><creationdate>20191224</creationdate><title>Three-Dimensional Resonant Exciton in Monolayer Tungsten Diselenide Actuated by Spin–Orbit Coupling</title><author>Tang, Chi Sin ; Yin, Xinmao ; Yang, Ming ; Wu, Di ; Birowosuto, Muhammad Danang ; Wu, Jing ; Li, Changjian ; Hettiarachchi, Chathuranga ; Chin, Xin Yu ; Chang, Yung-Huang ; Ouyang, Fangping ; Dang, Cuong ; Pennycook, Stephen J ; Feng, Yuan Ping ; Wang, Shijie ; Chi, Dongzhi ; Breese, Mark B. H ; Zhang, Wenjing ; Rusydi, Andrivo ; Wee, Andrew T. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-6118621b2c3cc88f6cb4ecd0871787acfa0ee9e18621dadd1a1c930da90749563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Chi Sin</creatorcontrib><creatorcontrib>Yin, Xinmao</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Birowosuto, Muhammad Danang</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Li, Changjian</creatorcontrib><creatorcontrib>Hettiarachchi, Chathuranga</creatorcontrib><creatorcontrib>Chin, Xin Yu</creatorcontrib><creatorcontrib>Chang, Yung-Huang</creatorcontrib><creatorcontrib>Ouyang, Fangping</creatorcontrib><creatorcontrib>Dang, Cuong</creatorcontrib><creatorcontrib>Pennycook, Stephen J</creatorcontrib><creatorcontrib>Feng, Yuan Ping</creatorcontrib><creatorcontrib>Wang, Shijie</creatorcontrib><creatorcontrib>Chi, Dongzhi</creatorcontrib><creatorcontrib>Breese, Mark B. H</creatorcontrib><creatorcontrib>Zhang, Wenjing</creatorcontrib><creatorcontrib>Rusydi, Andrivo</creatorcontrib><creatorcontrib>Wee, Andrew T. S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Chi Sin</au><au>Yin, Xinmao</au><au>Yang, Ming</au><au>Wu, Di</au><au>Birowosuto, Muhammad Danang</au><au>Wu, Jing</au><au>Li, Changjian</au><au>Hettiarachchi, Chathuranga</au><au>Chin, Xin Yu</au><au>Chang, Yung-Huang</au><au>Ouyang, Fangping</au><au>Dang, Cuong</au><au>Pennycook, Stephen J</au><au>Feng, Yuan Ping</au><au>Wang, Shijie</au><au>Chi, Dongzhi</au><au>Breese, Mark B. H</au><au>Zhang, Wenjing</au><au>Rusydi, Andrivo</au><au>Wee, Andrew T. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Resonant Exciton in Monolayer Tungsten Diselenide Actuated by Spin–Orbit Coupling</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-12-24</date><risdate>2019</risdate><volume>13</volume><issue>12</issue><spage>14529</spage><epage>14539</epage><pages>14529-14539</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The intricate features of many-body interactions and spin–orbit coupling play a significant role in numerous physical phenomena. Particularly in two-dimensional transition metal dichalcogenides (2D-TMDs), excitonic dynamics are a key phenomenon that promises opportunities for diverse range of device applications. Here, we report the direct observation of a visible-range three-dimensional resonant exciton and its associated charged exciton in monolayer tungsten diselenide, as compared to monolayer molybdenum disulfide. A comprehensive experimental study that includes high-resolution TEM, Raman, high-resolution spectroscopic ellipsometry over a wide temperature range down to 4 K, high-energy temperature, and excitation power-dependent photoluminescence spectroscopy has been conducted. It is supported by first-principles calculations to unravel the influence of spin–orbit coupling in the formation of the resonant exciton and to identify its in-plane and out-of-plane features. Furthermore, we study the impact of temperature and thickness on the spin–orbit coupling strength in 2D-TMDs. This work is crucial in creating a platform in the fundamental understanding of high-energy resonant exciton in layered two-dimensional systems and that such high-energy optoelectronic features make them an increasingly attractive candidate for novel electronic and optoelectronic applications particularly in the aspects of solar cells and light-emitting diodes via the manipulation of excitonic states.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31702890</pmid><doi>10.1021/acsnano.9b08385</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9562-1595</orcidid><orcidid>https://orcid.org/0000-0003-2190-2284</orcidid><orcidid>https://orcid.org/0000-0002-8246-4444</orcidid><orcidid>https://orcid.org/0000-0002-0876-1221</orcidid><orcidid>https://orcid.org/0000-0002-9997-6841</orcidid><orcidid>https://orcid.org/0000-0001-6183-4082</orcidid><orcidid>https://orcid.org/0000-0002-3210-6323</orcidid><orcidid>https://orcid.org/0000-0002-5828-4312</orcidid><orcidid>https://orcid.org/0000-0001-6931-900X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2019-12, Vol.13 (12), p.14529-14539 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2313379397 |
source | American Chemical Society Journals |
title | Three-Dimensional Resonant Exciton in Monolayer Tungsten Diselenide Actuated by Spin–Orbit Coupling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A04%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Resonant%20Exciton%20in%20Monolayer%20Tungsten%20Diselenide%20Actuated%20by%20Spin%E2%80%93Orbit%20Coupling&rft.jtitle=ACS%20nano&rft.au=Tang,%20Chi%20Sin&rft.date=2019-12-24&rft.volume=13&rft.issue=12&rft.spage=14529&rft.epage=14539&rft.pages=14529-14539&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b08385&rft_dat=%3Cproquest_cross%3E2313379397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313379397&rft_id=info:pmid/31702890&rfr_iscdi=true |