Femtosecond Laser-Induced Electron Emission from Nanodiamond-Coated Tungsten Needle Tips

We present femtosecond laser-induced electron emission from nanodiamond-coated tungsten tips. Based on the shortness of the femtosecond laser pulses, electrons can be photoexcited for wavelengths from the infrared (1932 nm) to the ultraviolet (235 nm) because multiphoton excitation becomes efficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-10, Vol.123 (14), p.146802-146802, Article 146802
Hauptverfasser: Tafel, A, Meier, S, Ristein, J, Hommelhoff, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146802
container_issue 14
container_start_page 146802
container_title Physical review letters
container_volume 123
creator Tafel, A
Meier, S
Ristein, J
Hommelhoff, P
description We present femtosecond laser-induced electron emission from nanodiamond-coated tungsten tips. Based on the shortness of the femtosecond laser pulses, electrons can be photoexcited for wavelengths from the infrared (1932 nm) to the ultraviolet (235 nm) because multiphoton excitation becomes efficient over the entire spectral range. Depending on the laser wavelength, we find different dominant emission channels identified by the number of photons needed to emit electrons. Based on the band alignment between tungsten and nanodiamond, the relevant emission channels can be identified as specific transitions in diamond and its graphitic boundaries. It is the combination of the character of initial and final states (i.e., bulk or surface-near, direct or indirect excitation in the diamond band structure), the number of photons providing the excitation energy, and the peak intensity of the laser pulses that determines the dominant excitation channel for photoemission. A specific feature of the hydrogen-terminated nanodiamond coating is its negative electron affinity that significantly lowers the work function and enables efficient emission from the conduction band minimum into vacuum without an energy barrier. Emission is stable for bunch charges of up to 400 electrons per laser pulse. We infer a normalized emittance of 1.2×1012  A m−2 sr−1. The properties of these tips are encouraging for their use as laser-triggered electron sources in applications such as ultrafast electron microscopy as well as diffraction and novel photonics-based laser accelerators.
doi_str_mv 10.1103/PhysRevLett.123.146802
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2313376573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305791829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-eb44b8e8f50bd46002031a11be09d516d4c531b9c0c208cd16ef9d5d33de2eb63</originalsourceid><addsrcrecordid>eNpdkMFKw0AQhhdRsFZfQQJevKTOZJNNcpTSaqFUkQrelmR3oinJbt1NhL69K_UgnmZgvn_4-Ri7RpghAr97_jj4F_pa0zDMMOEzTEUByQmbIORlnCOmp2wCwDEuAfJzduH9DgAwEcWEvS2pH6wnZY2O1pUnF6-MHhXpaNGRGpw10aJvvW_D0jjbR5vKWN1WfQjEc1sNgdyO5t0PZKINke4o2rZ7f8nOmqrzdPU7p-x1udjOH-P108Nqfr-OFRflEFOdpnVBRZNBrVMBkISiFWJNUOoMhU5VxrEuFagECqVRUBMOmnNNCdWCT9nt8e_e2c-R_CBDW0VdVxmyo5cJR85zkeU8oDf_0J0dnQntAgVZXmKRlIESR0o5672jRu5d21fuIBHkj3D5R7gMwuVROP8GxsJ3JA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305791829</pqid></control><display><type>article</type><title>Femtosecond Laser-Induced Electron Emission from Nanodiamond-Coated Tungsten Needle Tips</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tafel, A ; Meier, S ; Ristein, J ; Hommelhoff, P</creator><creatorcontrib>Tafel, A ; Meier, S ; Ristein, J ; Hommelhoff, P</creatorcontrib><description>We present femtosecond laser-induced electron emission from nanodiamond-coated tungsten tips. Based on the shortness of the femtosecond laser pulses, electrons can be photoexcited for wavelengths from the infrared (1932 nm) to the ultraviolet (235 nm) because multiphoton excitation becomes efficient over the entire spectral range. Depending on the laser wavelength, we find different dominant emission channels identified by the number of photons needed to emit electrons. Based on the band alignment between tungsten and nanodiamond, the relevant emission channels can be identified as specific transitions in diamond and its graphitic boundaries. It is the combination of the character of initial and final states (i.e., bulk or surface-near, direct or indirect excitation in the diamond band structure), the number of photons providing the excitation energy, and the peak intensity of the laser pulses that determines the dominant excitation channel for photoemission. A specific feature of the hydrogen-terminated nanodiamond coating is its negative electron affinity that significantly lowers the work function and enables efficient emission from the conduction band minimum into vacuum without an energy barrier. Emission is stable for bunch charges of up to 400 electrons per laser pulse. We infer a normalized emittance of &lt;0.20  nm  rad and a normalized peak brightness of &gt;1.2×1012  A m−2 sr−1. The properties of these tips are encouraging for their use as laser-triggered electron sources in applications such as ultrafast electron microscopy as well as diffraction and novel photonics-based laser accelerators.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.123.146802</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Accelerators ; Channels ; Conduction bands ; Diamonds ; Electron affinity ; Electron emission ; Electron sources ; Emittance ; Excitation ; Femtosecond pulses ; Lasers ; Nanostructure ; Negative electron affinity ; Photoelectric emission ; Photonics ; Photons ; Tips ; Tungsten ; Work functions</subject><ispartof>Physical review letters, 2019-10, Vol.123 (14), p.146802-146802, Article 146802</ispartof><rights>Copyright American Physical Society Oct 4, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-eb44b8e8f50bd46002031a11be09d516d4c531b9c0c208cd16ef9d5d33de2eb63</citedby><cites>FETCH-LOGICAL-c369t-eb44b8e8f50bd46002031a11be09d516d4c531b9c0c208cd16ef9d5d33de2eb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Tafel, A</creatorcontrib><creatorcontrib>Meier, S</creatorcontrib><creatorcontrib>Ristein, J</creatorcontrib><creatorcontrib>Hommelhoff, P</creatorcontrib><title>Femtosecond Laser-Induced Electron Emission from Nanodiamond-Coated Tungsten Needle Tips</title><title>Physical review letters</title><description>We present femtosecond laser-induced electron emission from nanodiamond-coated tungsten tips. Based on the shortness of the femtosecond laser pulses, electrons can be photoexcited for wavelengths from the infrared (1932 nm) to the ultraviolet (235 nm) because multiphoton excitation becomes efficient over the entire spectral range. Depending on the laser wavelength, we find different dominant emission channels identified by the number of photons needed to emit electrons. Based on the band alignment between tungsten and nanodiamond, the relevant emission channels can be identified as specific transitions in diamond and its graphitic boundaries. It is the combination of the character of initial and final states (i.e., bulk or surface-near, direct or indirect excitation in the diamond band structure), the number of photons providing the excitation energy, and the peak intensity of the laser pulses that determines the dominant excitation channel for photoemission. A specific feature of the hydrogen-terminated nanodiamond coating is its negative electron affinity that significantly lowers the work function and enables efficient emission from the conduction band minimum into vacuum without an energy barrier. Emission is stable for bunch charges of up to 400 electrons per laser pulse. We infer a normalized emittance of &lt;0.20  nm  rad and a normalized peak brightness of &gt;1.2×1012  A m−2 sr−1. The properties of these tips are encouraging for their use as laser-triggered electron sources in applications such as ultrafast electron microscopy as well as diffraction and novel photonics-based laser accelerators.</description><subject>Accelerators</subject><subject>Channels</subject><subject>Conduction bands</subject><subject>Diamonds</subject><subject>Electron affinity</subject><subject>Electron emission</subject><subject>Electron sources</subject><subject>Emittance</subject><subject>Excitation</subject><subject>Femtosecond pulses</subject><subject>Lasers</subject><subject>Nanostructure</subject><subject>Negative electron affinity</subject><subject>Photoelectric emission</subject><subject>Photonics</subject><subject>Photons</subject><subject>Tips</subject><subject>Tungsten</subject><subject>Work functions</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKw0AQhhdRsFZfQQJevKTOZJNNcpTSaqFUkQrelmR3oinJbt1NhL69K_UgnmZgvn_4-Ri7RpghAr97_jj4F_pa0zDMMOEzTEUByQmbIORlnCOmp2wCwDEuAfJzduH9DgAwEcWEvS2pH6wnZY2O1pUnF6-MHhXpaNGRGpw10aJvvW_D0jjbR5vKWN1WfQjEc1sNgdyO5t0PZKINke4o2rZ7f8nOmqrzdPU7p-x1udjOH-P108Nqfr-OFRflEFOdpnVBRZNBrVMBkISiFWJNUOoMhU5VxrEuFagECqVRUBMOmnNNCdWCT9nt8e_e2c-R_CBDW0VdVxmyo5cJR85zkeU8oDf_0J0dnQntAgVZXmKRlIESR0o5672jRu5d21fuIBHkj3D5R7gMwuVROP8GxsJ3JA</recordid><startdate>20191004</startdate><enddate>20191004</enddate><creator>Tafel, A</creator><creator>Meier, S</creator><creator>Ristein, J</creator><creator>Hommelhoff, P</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20191004</creationdate><title>Femtosecond Laser-Induced Electron Emission from Nanodiamond-Coated Tungsten Needle Tips</title><author>Tafel, A ; Meier, S ; Ristein, J ; Hommelhoff, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-eb44b8e8f50bd46002031a11be09d516d4c531b9c0c208cd16ef9d5d33de2eb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accelerators</topic><topic>Channels</topic><topic>Conduction bands</topic><topic>Diamonds</topic><topic>Electron affinity</topic><topic>Electron emission</topic><topic>Electron sources</topic><topic>Emittance</topic><topic>Excitation</topic><topic>Femtosecond pulses</topic><topic>Lasers</topic><topic>Nanostructure</topic><topic>Negative electron affinity</topic><topic>Photoelectric emission</topic><topic>Photonics</topic><topic>Photons</topic><topic>Tips</topic><topic>Tungsten</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tafel, A</creatorcontrib><creatorcontrib>Meier, S</creatorcontrib><creatorcontrib>Ristein, J</creatorcontrib><creatorcontrib>Hommelhoff, P</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tafel, A</au><au>Meier, S</au><au>Ristein, J</au><au>Hommelhoff, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Femtosecond Laser-Induced Electron Emission from Nanodiamond-Coated Tungsten Needle Tips</atitle><jtitle>Physical review letters</jtitle><date>2019-10-04</date><risdate>2019</risdate><volume>123</volume><issue>14</issue><spage>146802</spage><epage>146802</epage><pages>146802-146802</pages><artnum>146802</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We present femtosecond laser-induced electron emission from nanodiamond-coated tungsten tips. Based on the shortness of the femtosecond laser pulses, electrons can be photoexcited for wavelengths from the infrared (1932 nm) to the ultraviolet (235 nm) because multiphoton excitation becomes efficient over the entire spectral range. Depending on the laser wavelength, we find different dominant emission channels identified by the number of photons needed to emit electrons. Based on the band alignment between tungsten and nanodiamond, the relevant emission channels can be identified as specific transitions in diamond and its graphitic boundaries. It is the combination of the character of initial and final states (i.e., bulk or surface-near, direct or indirect excitation in the diamond band structure), the number of photons providing the excitation energy, and the peak intensity of the laser pulses that determines the dominant excitation channel for photoemission. A specific feature of the hydrogen-terminated nanodiamond coating is its negative electron affinity that significantly lowers the work function and enables efficient emission from the conduction band minimum into vacuum without an energy barrier. Emission is stable for bunch charges of up to 400 electrons per laser pulse. We infer a normalized emittance of &lt;0.20  nm  rad and a normalized peak brightness of &gt;1.2×1012  A m−2 sr−1. The properties of these tips are encouraging for their use as laser-triggered electron sources in applications such as ultrafast electron microscopy as well as diffraction and novel photonics-based laser accelerators.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.123.146802</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2019-10, Vol.123 (14), p.146802-146802, Article 146802
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2313376573
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects Accelerators
Channels
Conduction bands
Diamonds
Electron affinity
Electron emission
Electron sources
Emittance
Excitation
Femtosecond pulses
Lasers
Nanostructure
Negative electron affinity
Photoelectric emission
Photonics
Photons
Tips
Tungsten
Work functions
title Femtosecond Laser-Induced Electron Emission from Nanodiamond-Coated Tungsten Needle Tips
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Femtosecond%20Laser-Induced%20Electron%20Emission%20from%20Nanodiamond-Coated%20Tungsten%20Needle%20Tips&rft.jtitle=Physical%20review%20letters&rft.au=Tafel,%20A&rft.date=2019-10-04&rft.volume=123&rft.issue=14&rft.spage=146802&rft.epage=146802&rft.pages=146802-146802&rft.artnum=146802&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.123.146802&rft_dat=%3Cproquest_cross%3E2305791829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305791829&rft_id=info:pmid/&rfr_iscdi=true