Separating Electrons and Donors in BaSnO3 via Band Engineering

Separating electrons from their source atoms in La-doped BaSnO3, the first perovskite oxide semiconductor to be discovered with high room-temperature electron mobility, remains a subject of great interest for achieving high-mobility electron gas in two dimensions. So far, the vast majority of work i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2019-12, Vol.19 (12), p.8920-8927
Hauptverfasser: Prakash, Abhinav, Quackenbush, Nicholas F, Yun, Hwanhui, Held, Jacob, Wang, Tianqi, Truttmann, Tristan, Ablett, James M, Weiland, Conan, Lee, Tien-Lin, Woicik, Joseph C, Mkhoyan, K. Andre, Jalan, Bharat
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8927
container_issue 12
container_start_page 8920
container_title Nano letters
container_volume 19
creator Prakash, Abhinav
Quackenbush, Nicholas F
Yun, Hwanhui
Held, Jacob
Wang, Tianqi
Truttmann, Tristan
Ablett, James M
Weiland, Conan
Lee, Tien-Lin
Woicik, Joseph C
Mkhoyan, K. Andre
Jalan, Bharat
description Separating electrons from their source atoms in La-doped BaSnO3, the first perovskite oxide semiconductor to be discovered with high room-temperature electron mobility, remains a subject of great interest for achieving high-mobility electron gas in two dimensions. So far, the vast majority of work in perovskite oxides has focused on heterostructures involving SrTiO3 as an active layer. Here we report the demonstration of modulation doping in BaSnO3 as the high room-temperature mobility host without the use of SrTiO3. Significantly, we show the use of angle-resolved hard X-ray photoelectron spectroscopy (HAXPES) as a nondestructive approach to not only determine the location of electrons at the buried interface but also to quantify the width of electron distribution in BaSnO3. The transport results are in good agreement with the results of self-consistent solution to one-dimensional Poisson and Schrödinger equations. Finally, we discuss viable routes to engineer two-dimensional electron gas density through band-offset engineering.
doi_str_mv 10.1021/acs.nanolett.9b03825
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2313376392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313376392</sourcerecordid><originalsourceid>FETCH-LOGICAL-a229t-a4903def0a316ec64b7d8edf94a9a2c437298662248c7afbd8e712b6f96b4f0d3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwBhxy5JKw9jpOfEGCEn6kSj0UztYmcapUwS5xyvPjqoXTjnZmV6OPsVsOGQfB76kJmSPnBztNma4BS5GfsRnPEVKltTj_16W8ZFchbAFAYw4z9rC2Oxpp6t0mqQbbTKN3ISHXJs_e-TEkvUueaO1WmPz0FGV0KrfpnbVjvLlmFx0Nwd6c5px9vlQfi7d0uXp9XzwuUxJCTylJDdjaDgi5so2SddGWtu20JE2ikVgIXSolhCybgro6mgUXteq0qmUHLc7Z3fHvbvTfexsm89WHxg4DOev3wQjkiIVCLWIUjtFIxWz9fnSxmOFgDqjMYfmHypxQ4S_wQF9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313376392</pqid></control><display><type>article</type><title>Separating Electrons and Donors in BaSnO3 via Band Engineering</title><source>ACS Publications</source><creator>Prakash, Abhinav ; Quackenbush, Nicholas F ; Yun, Hwanhui ; Held, Jacob ; Wang, Tianqi ; Truttmann, Tristan ; Ablett, James M ; Weiland, Conan ; Lee, Tien-Lin ; Woicik, Joseph C ; Mkhoyan, K. Andre ; Jalan, Bharat</creator><creatorcontrib>Prakash, Abhinav ; Quackenbush, Nicholas F ; Yun, Hwanhui ; Held, Jacob ; Wang, Tianqi ; Truttmann, Tristan ; Ablett, James M ; Weiland, Conan ; Lee, Tien-Lin ; Woicik, Joseph C ; Mkhoyan, K. Andre ; Jalan, Bharat</creatorcontrib><description>Separating electrons from their source atoms in La-doped BaSnO3, the first perovskite oxide semiconductor to be discovered with high room-temperature electron mobility, remains a subject of great interest for achieving high-mobility electron gas in two dimensions. So far, the vast majority of work in perovskite oxides has focused on heterostructures involving SrTiO3 as an active layer. Here we report the demonstration of modulation doping in BaSnO3 as the high room-temperature mobility host without the use of SrTiO3. Significantly, we show the use of angle-resolved hard X-ray photoelectron spectroscopy (HAXPES) as a nondestructive approach to not only determine the location of electrons at the buried interface but also to quantify the width of electron distribution in BaSnO3. The transport results are in good agreement with the results of self-consistent solution to one-dimensional Poisson and Schrödinger equations. Finally, we discuss viable routes to engineer two-dimensional electron gas density through band-offset engineering.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b03825</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2019-12, Vol.19 (12), p.8920-8927</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7940-0490 ; 0000-0003-3864-4314 ; 0000-0003-3568-5452 ; 0000-0002-8899-0568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.9b03825$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.9b03825$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Prakash, Abhinav</creatorcontrib><creatorcontrib>Quackenbush, Nicholas F</creatorcontrib><creatorcontrib>Yun, Hwanhui</creatorcontrib><creatorcontrib>Held, Jacob</creatorcontrib><creatorcontrib>Wang, Tianqi</creatorcontrib><creatorcontrib>Truttmann, Tristan</creatorcontrib><creatorcontrib>Ablett, James M</creatorcontrib><creatorcontrib>Weiland, Conan</creatorcontrib><creatorcontrib>Lee, Tien-Lin</creatorcontrib><creatorcontrib>Woicik, Joseph C</creatorcontrib><creatorcontrib>Mkhoyan, K. Andre</creatorcontrib><creatorcontrib>Jalan, Bharat</creatorcontrib><title>Separating Electrons and Donors in BaSnO3 via Band Engineering</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Separating electrons from their source atoms in La-doped BaSnO3, the first perovskite oxide semiconductor to be discovered with high room-temperature electron mobility, remains a subject of great interest for achieving high-mobility electron gas in two dimensions. So far, the vast majority of work in perovskite oxides has focused on heterostructures involving SrTiO3 as an active layer. Here we report the demonstration of modulation doping in BaSnO3 as the high room-temperature mobility host without the use of SrTiO3. Significantly, we show the use of angle-resolved hard X-ray photoelectron spectroscopy (HAXPES) as a nondestructive approach to not only determine the location of electrons at the buried interface but also to quantify the width of electron distribution in BaSnO3. The transport results are in good agreement with the results of self-consistent solution to one-dimensional Poisson and Schrödinger equations. Finally, we discuss viable routes to engineer two-dimensional electron gas density through band-offset engineering.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwBhxy5JKw9jpOfEGCEn6kSj0UztYmcapUwS5xyvPjqoXTjnZmV6OPsVsOGQfB76kJmSPnBztNma4BS5GfsRnPEVKltTj_16W8ZFchbAFAYw4z9rC2Oxpp6t0mqQbbTKN3ISHXJs_e-TEkvUueaO1WmPz0FGV0KrfpnbVjvLlmFx0Nwd6c5px9vlQfi7d0uXp9XzwuUxJCTylJDdjaDgi5so2SddGWtu20JE2ikVgIXSolhCybgro6mgUXteq0qmUHLc7Z3fHvbvTfexsm89WHxg4DOev3wQjkiIVCLWIUjtFIxWz9fnSxmOFgDqjMYfmHypxQ4S_wQF9U</recordid><startdate>20191211</startdate><enddate>20191211</enddate><creator>Prakash, Abhinav</creator><creator>Quackenbush, Nicholas F</creator><creator>Yun, Hwanhui</creator><creator>Held, Jacob</creator><creator>Wang, Tianqi</creator><creator>Truttmann, Tristan</creator><creator>Ablett, James M</creator><creator>Weiland, Conan</creator><creator>Lee, Tien-Lin</creator><creator>Woicik, Joseph C</creator><creator>Mkhoyan, K. Andre</creator><creator>Jalan, Bharat</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7940-0490</orcidid><orcidid>https://orcid.org/0000-0003-3864-4314</orcidid><orcidid>https://orcid.org/0000-0003-3568-5452</orcidid><orcidid>https://orcid.org/0000-0002-8899-0568</orcidid></search><sort><creationdate>20191211</creationdate><title>Separating Electrons and Donors in BaSnO3 via Band Engineering</title><author>Prakash, Abhinav ; Quackenbush, Nicholas F ; Yun, Hwanhui ; Held, Jacob ; Wang, Tianqi ; Truttmann, Tristan ; Ablett, James M ; Weiland, Conan ; Lee, Tien-Lin ; Woicik, Joseph C ; Mkhoyan, K. Andre ; Jalan, Bharat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a229t-a4903def0a316ec64b7d8edf94a9a2c437298662248c7afbd8e712b6f96b4f0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prakash, Abhinav</creatorcontrib><creatorcontrib>Quackenbush, Nicholas F</creatorcontrib><creatorcontrib>Yun, Hwanhui</creatorcontrib><creatorcontrib>Held, Jacob</creatorcontrib><creatorcontrib>Wang, Tianqi</creatorcontrib><creatorcontrib>Truttmann, Tristan</creatorcontrib><creatorcontrib>Ablett, James M</creatorcontrib><creatorcontrib>Weiland, Conan</creatorcontrib><creatorcontrib>Lee, Tien-Lin</creatorcontrib><creatorcontrib>Woicik, Joseph C</creatorcontrib><creatorcontrib>Mkhoyan, K. Andre</creatorcontrib><creatorcontrib>Jalan, Bharat</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prakash, Abhinav</au><au>Quackenbush, Nicholas F</au><au>Yun, Hwanhui</au><au>Held, Jacob</au><au>Wang, Tianqi</au><au>Truttmann, Tristan</au><au>Ablett, James M</au><au>Weiland, Conan</au><au>Lee, Tien-Lin</au><au>Woicik, Joseph C</au><au>Mkhoyan, K. Andre</au><au>Jalan, Bharat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separating Electrons and Donors in BaSnO3 via Band Engineering</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-12-11</date><risdate>2019</risdate><volume>19</volume><issue>12</issue><spage>8920</spage><epage>8927</epage><pages>8920-8927</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Separating electrons from their source atoms in La-doped BaSnO3, the first perovskite oxide semiconductor to be discovered with high room-temperature electron mobility, remains a subject of great interest for achieving high-mobility electron gas in two dimensions. So far, the vast majority of work in perovskite oxides has focused on heterostructures involving SrTiO3 as an active layer. Here we report the demonstration of modulation doping in BaSnO3 as the high room-temperature mobility host without the use of SrTiO3. Significantly, we show the use of angle-resolved hard X-ray photoelectron spectroscopy (HAXPES) as a nondestructive approach to not only determine the location of electrons at the buried interface but also to quantify the width of electron distribution in BaSnO3. The transport results are in good agreement with the results of self-consistent solution to one-dimensional Poisson and Schrödinger equations. Finally, we discuss viable routes to engineer two-dimensional electron gas density through band-offset engineering.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.9b03825</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7940-0490</orcidid><orcidid>https://orcid.org/0000-0003-3864-4314</orcidid><orcidid>https://orcid.org/0000-0003-3568-5452</orcidid><orcidid>https://orcid.org/0000-0002-8899-0568</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2019-12, Vol.19 (12), p.8920-8927
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2313376392
source ACS Publications
title Separating Electrons and Donors in BaSnO3 via Band Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A09%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separating%20Electrons%20and%20Donors%20in%20BaSnO3%20via%20Band%20Engineering&rft.jtitle=Nano%20letters&rft.au=Prakash,%20Abhinav&rft.date=2019-12-11&rft.volume=19&rft.issue=12&rft.spage=8920&rft.epage=8927&rft.pages=8920-8927&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b03825&rft_dat=%3Cproquest_acs_j%3E2313376392%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313376392&rft_id=info:pmid/&rfr_iscdi=true