Comparing Data-Independent Acquisition and Parallel Reaction Monitoring in Their Abilities To Differentiate High-Density Lipoprotein Subclasses
High-density lipoprotein (HDL) is a diverse group of particles with multiple cardioprotective functions. HDL proteome follows HDL particle complexity. Many proteins were described in HDL, but consistent quantification of HDL protein cargo is still a challenge. To address this issue, the aim of this...
Gespeichert in:
Veröffentlicht in: | Journal of proteome research 2020-01, Vol.19 (1), p.248-259 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 259 |
---|---|
container_issue | 1 |
container_start_page | 248 |
container_title | Journal of proteome research |
container_volume | 19 |
creator | Silva, Amanda R. M Toyoshima, Marcos T. K Passarelli, Marisa Di Mascio, Paolo Ronsein, Graziella E |
description | High-density lipoprotein (HDL) is a diverse group of particles with multiple cardioprotective functions. HDL proteome follows HDL particle complexity. Many proteins were described in HDL, but consistent quantification of HDL protein cargo is still a challenge. To address this issue, the aim of this work was to compare data-independent acquisition (DIA) and parallel reaction monitoring (PRM) methodologies in their abilities to differentiate HDL subclasses through their proteomes. To this end, we first evaluated the analytical performances of DIA and PRM using labeled peptides in pooled digested HDL as a biological matrix. Next, we compared the quantification capabilities of the two methodologies for 24 proteins found in HDL2 and HDL3 from 19 apparently healthy subjects. DIA and PRM exhibited comparable linearity, accuracy, and precision. Moreover, both methodologies worked equally well, differentiating HDL subclasses’ proteomes with high precision. Our findings may help to understand HDL functional diversity. |
doi_str_mv | 10.1021/acs.jproteome.9b00511 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2313359086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313359086</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-aa09b76052bc6f026dccdfe38028e021adcafe90ae4d783506eb7aee5f370ad03</originalsourceid><addsrcrecordid>eNqFkU1u2zAQhYmiQZ2mOUILLruROxRD_SwNu4kNuEiQOmthRI0SGhKpkNIip-iVw9hOtt0MB8T7HofzGPsuYC4gFb9Qh_l-8G4k19O8rAGUEJ_YuVBSJbKE_PN7X5Ryxr6GsAcQKgf5hc2kyMpcwdU5-7d0_YDe2Ee-whGTjW1ooFjsyBf6eTLBjMZZjrbhd-ix66jj94T6cPvHWTO6A20s3z2R8XxRmy4yFPjO8ZVpW_LRzOBIfG0en5IV2ej5wrdmcIf5I_l3qnWHIVD4xs5a7AJdns4L9nD9e7dcJ9vbm81ysU1QKjEmiFDWeQYqrXXWQpo1WjctyQLSguJ6sNHYUglIV01eSAUZ1TkSqVbmgA3IC_bz6BtHeJ4ojFVvgqauQ0tuClUqhZSqhCKLUnWUau9C8NRWgzc9-pdKQPWWRRWzqD6yqE5ZRO7H6Ymp7qn5oN6XHwXiKDjwbvI2_vg_pq_LBp4R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313359086</pqid></control><display><type>article</type><title>Comparing Data-Independent Acquisition and Parallel Reaction Monitoring in Their Abilities To Differentiate High-Density Lipoprotein Subclasses</title><source>American Chemical Society</source><source>MEDLINE</source><creator>Silva, Amanda R. M ; Toyoshima, Marcos T. K ; Passarelli, Marisa ; Di Mascio, Paolo ; Ronsein, Graziella E</creator><creatorcontrib>Silva, Amanda R. M ; Toyoshima, Marcos T. K ; Passarelli, Marisa ; Di Mascio, Paolo ; Ronsein, Graziella E</creatorcontrib><description>High-density lipoprotein (HDL) is a diverse group of particles with multiple cardioprotective functions. HDL proteome follows HDL particle complexity. Many proteins were described in HDL, but consistent quantification of HDL protein cargo is still a challenge. To address this issue, the aim of this work was to compare data-independent acquisition (DIA) and parallel reaction monitoring (PRM) methodologies in their abilities to differentiate HDL subclasses through their proteomes. To this end, we first evaluated the analytical performances of DIA and PRM using labeled peptides in pooled digested HDL as a biological matrix. Next, we compared the quantification capabilities of the two methodologies for 24 proteins found in HDL2 and HDL3 from 19 apparently healthy subjects. DIA and PRM exhibited comparable linearity, accuracy, and precision. Moreover, both methodologies worked equally well, differentiating HDL subclasses’ proteomes with high precision. Our findings may help to understand HDL functional diversity.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.9b00511</identifier><identifier>PMID: 31697504</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adult ; Aged ; Calibration ; Chromatography, High Pressure Liquid - methods ; Humans ; Limit of Detection ; Lipoproteins, HDL - blood ; Lipoproteins, HDL2 - blood ; Lipoproteins, HDL3 - blood ; Middle Aged ; Proteomics - methods ; Proteomics - statistics & numerical data ; Quality Control ; Tandem Mass Spectrometry - methods ; Workflow ; Young Adult</subject><ispartof>Journal of proteome research, 2020-01, Vol.19 (1), p.248-259</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-aa09b76052bc6f026dccdfe38028e021adcafe90ae4d783506eb7aee5f370ad03</citedby><cites>FETCH-LOGICAL-a351t-aa09b76052bc6f026dccdfe38028e021adcafe90ae4d783506eb7aee5f370ad03</cites><orcidid>0000-0003-4125-8350 ; 0000-0002-9146-4606 ; 0000-0002-9001-5999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.9b00511$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.9b00511$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31697504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva, Amanda R. M</creatorcontrib><creatorcontrib>Toyoshima, Marcos T. K</creatorcontrib><creatorcontrib>Passarelli, Marisa</creatorcontrib><creatorcontrib>Di Mascio, Paolo</creatorcontrib><creatorcontrib>Ronsein, Graziella E</creatorcontrib><title>Comparing Data-Independent Acquisition and Parallel Reaction Monitoring in Their Abilities To Differentiate High-Density Lipoprotein Subclasses</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>High-density lipoprotein (HDL) is a diverse group of particles with multiple cardioprotective functions. HDL proteome follows HDL particle complexity. Many proteins were described in HDL, but consistent quantification of HDL protein cargo is still a challenge. To address this issue, the aim of this work was to compare data-independent acquisition (DIA) and parallel reaction monitoring (PRM) methodologies in their abilities to differentiate HDL subclasses through their proteomes. To this end, we first evaluated the analytical performances of DIA and PRM using labeled peptides in pooled digested HDL as a biological matrix. Next, we compared the quantification capabilities of the two methodologies for 24 proteins found in HDL2 and HDL3 from 19 apparently healthy subjects. DIA and PRM exhibited comparable linearity, accuracy, and precision. Moreover, both methodologies worked equally well, differentiating HDL subclasses’ proteomes with high precision. Our findings may help to understand HDL functional diversity.</description><subject>Adult</subject><subject>Aged</subject><subject>Calibration</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Humans</subject><subject>Limit of Detection</subject><subject>Lipoproteins, HDL - blood</subject><subject>Lipoproteins, HDL2 - blood</subject><subject>Lipoproteins, HDL3 - blood</subject><subject>Middle Aged</subject><subject>Proteomics - methods</subject><subject>Proteomics - statistics & numerical data</subject><subject>Quality Control</subject><subject>Tandem Mass Spectrometry - methods</subject><subject>Workflow</subject><subject>Young Adult</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1u2zAQhYmiQZ2mOUILLruROxRD_SwNu4kNuEiQOmthRI0SGhKpkNIip-iVw9hOtt0MB8T7HofzGPsuYC4gFb9Qh_l-8G4k19O8rAGUEJ_YuVBSJbKE_PN7X5Ryxr6GsAcQKgf5hc2kyMpcwdU5-7d0_YDe2Ee-whGTjW1ooFjsyBf6eTLBjMZZjrbhd-ix66jj94T6cPvHWTO6A20s3z2R8XxRmy4yFPjO8ZVpW_LRzOBIfG0en5IV2ej5wrdmcIf5I_l3qnWHIVD4xs5a7AJdns4L9nD9e7dcJ9vbm81ysU1QKjEmiFDWeQYqrXXWQpo1WjctyQLSguJ6sNHYUglIV01eSAUZ1TkSqVbmgA3IC_bz6BtHeJ4ojFVvgqauQ0tuClUqhZSqhCKLUnWUau9C8NRWgzc9-pdKQPWWRRWzqD6yqE5ZRO7H6Ymp7qn5oN6XHwXiKDjwbvI2_vg_pq_LBp4R</recordid><startdate>20200103</startdate><enddate>20200103</enddate><creator>Silva, Amanda R. M</creator><creator>Toyoshima, Marcos T. K</creator><creator>Passarelli, Marisa</creator><creator>Di Mascio, Paolo</creator><creator>Ronsein, Graziella E</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4125-8350</orcidid><orcidid>https://orcid.org/0000-0002-9146-4606</orcidid><orcidid>https://orcid.org/0000-0002-9001-5999</orcidid></search><sort><creationdate>20200103</creationdate><title>Comparing Data-Independent Acquisition and Parallel Reaction Monitoring in Their Abilities To Differentiate High-Density Lipoprotein Subclasses</title><author>Silva, Amanda R. M ; Toyoshima, Marcos T. K ; Passarelli, Marisa ; Di Mascio, Paolo ; Ronsein, Graziella E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-aa09b76052bc6f026dccdfe38028e021adcafe90ae4d783506eb7aee5f370ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Calibration</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Humans</topic><topic>Limit of Detection</topic><topic>Lipoproteins, HDL - blood</topic><topic>Lipoproteins, HDL2 - blood</topic><topic>Lipoproteins, HDL3 - blood</topic><topic>Middle Aged</topic><topic>Proteomics - methods</topic><topic>Proteomics - statistics & numerical data</topic><topic>Quality Control</topic><topic>Tandem Mass Spectrometry - methods</topic><topic>Workflow</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Amanda R. M</creatorcontrib><creatorcontrib>Toyoshima, Marcos T. K</creatorcontrib><creatorcontrib>Passarelli, Marisa</creatorcontrib><creatorcontrib>Di Mascio, Paolo</creatorcontrib><creatorcontrib>Ronsein, Graziella E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Amanda R. M</au><au>Toyoshima, Marcos T. K</au><au>Passarelli, Marisa</au><au>Di Mascio, Paolo</au><au>Ronsein, Graziella E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing Data-Independent Acquisition and Parallel Reaction Monitoring in Their Abilities To Differentiate High-Density Lipoprotein Subclasses</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2020-01-03</date><risdate>2020</risdate><volume>19</volume><issue>1</issue><spage>248</spage><epage>259</epage><pages>248-259</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>High-density lipoprotein (HDL) is a diverse group of particles with multiple cardioprotective functions. HDL proteome follows HDL particle complexity. Many proteins were described in HDL, but consistent quantification of HDL protein cargo is still a challenge. To address this issue, the aim of this work was to compare data-independent acquisition (DIA) and parallel reaction monitoring (PRM) methodologies in their abilities to differentiate HDL subclasses through their proteomes. To this end, we first evaluated the analytical performances of DIA and PRM using labeled peptides in pooled digested HDL as a biological matrix. Next, we compared the quantification capabilities of the two methodologies for 24 proteins found in HDL2 and HDL3 from 19 apparently healthy subjects. DIA and PRM exhibited comparable linearity, accuracy, and precision. Moreover, both methodologies worked equally well, differentiating HDL subclasses’ proteomes with high precision. Our findings may help to understand HDL functional diversity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31697504</pmid><doi>10.1021/acs.jproteome.9b00511</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4125-8350</orcidid><orcidid>https://orcid.org/0000-0002-9146-4606</orcidid><orcidid>https://orcid.org/0000-0002-9001-5999</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-3893 |
ispartof | Journal of proteome research, 2020-01, Vol.19 (1), p.248-259 |
issn | 1535-3893 1535-3907 |
language | eng |
recordid | cdi_proquest_miscellaneous_2313359086 |
source | American Chemical Society; MEDLINE |
subjects | Adult Aged Calibration Chromatography, High Pressure Liquid - methods Humans Limit of Detection Lipoproteins, HDL - blood Lipoproteins, HDL2 - blood Lipoproteins, HDL3 - blood Middle Aged Proteomics - methods Proteomics - statistics & numerical data Quality Control Tandem Mass Spectrometry - methods Workflow Young Adult |
title | Comparing Data-Independent Acquisition and Parallel Reaction Monitoring in Their Abilities To Differentiate High-Density Lipoprotein Subclasses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20Data-Independent%20Acquisition%20and%20Parallel%20Reaction%20Monitoring%20in%20Their%20Abilities%20To%20Differentiate%20High-Density%20Lipoprotein%20Subclasses&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Silva,%20Amanda%20R.%20M&rft.date=2020-01-03&rft.volume=19&rft.issue=1&rft.spage=248&rft.epage=259&rft.pages=248-259&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.9b00511&rft_dat=%3Cproquest_cross%3E2313359086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313359086&rft_id=info:pmid/31697504&rfr_iscdi=true |