Comparing Data-Independent Acquisition and Parallel Reaction Monitoring in Their Abilities To Differentiate High-Density Lipoprotein Subclasses

High-density lipoprotein (HDL) is a diverse group of particles with multiple cardioprotective functions. HDL proteome follows HDL particle complexity. Many proteins were described in HDL, but consistent quantification of HDL protein cargo is still a challenge. To address this issue, the aim of this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2020-01, Vol.19 (1), p.248-259
Hauptverfasser: Silva, Amanda R. M, Toyoshima, Marcos T. K, Passarelli, Marisa, Di Mascio, Paolo, Ronsein, Graziella E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue 1
container_start_page 248
container_title Journal of proteome research
container_volume 19
creator Silva, Amanda R. M
Toyoshima, Marcos T. K
Passarelli, Marisa
Di Mascio, Paolo
Ronsein, Graziella E
description High-density lipoprotein (HDL) is a diverse group of particles with multiple cardioprotective functions. HDL proteome follows HDL particle complexity. Many proteins were described in HDL, but consistent quantification of HDL protein cargo is still a challenge. To address this issue, the aim of this work was to compare data-independent acquisition (DIA) and parallel reaction monitoring (PRM) methodologies in their abilities to differentiate HDL subclasses through their proteomes. To this end, we first evaluated the analytical performances of DIA and PRM using labeled peptides in pooled digested HDL as a biological matrix. Next, we compared the quantification capabilities of the two methodologies for 24 proteins found in HDL2 and HDL3 from 19 apparently healthy subjects. DIA and PRM exhibited comparable linearity, accuracy, and precision. Moreover, both methodologies worked equally well, differentiating HDL subclasses’ proteomes with high precision. Our findings may help to understand HDL functional diversity.
doi_str_mv 10.1021/acs.jproteome.9b00511
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2313359086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313359086</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-aa09b76052bc6f026dccdfe38028e021adcafe90ae4d783506eb7aee5f370ad03</originalsourceid><addsrcrecordid>eNqFkU1u2zAQhYmiQZ2mOUILLruROxRD_SwNu4kNuEiQOmthRI0SGhKpkNIip-iVw9hOtt0MB8T7HofzGPsuYC4gFb9Qh_l-8G4k19O8rAGUEJ_YuVBSJbKE_PN7X5Ryxr6GsAcQKgf5hc2kyMpcwdU5-7d0_YDe2Ee-whGTjW1ooFjsyBf6eTLBjMZZjrbhd-ix66jj94T6cPvHWTO6A20s3z2R8XxRmy4yFPjO8ZVpW_LRzOBIfG0en5IV2ej5wrdmcIf5I_l3qnWHIVD4xs5a7AJdns4L9nD9e7dcJ9vbm81ysU1QKjEmiFDWeQYqrXXWQpo1WjctyQLSguJ6sNHYUglIV01eSAUZ1TkSqVbmgA3IC_bz6BtHeJ4ojFVvgqauQ0tuClUqhZSqhCKLUnWUau9C8NRWgzc9-pdKQPWWRRWzqD6yqE5ZRO7H6Ymp7qn5oN6XHwXiKDjwbvI2_vg_pq_LBp4R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313359086</pqid></control><display><type>article</type><title>Comparing Data-Independent Acquisition and Parallel Reaction Monitoring in Their Abilities To Differentiate High-Density Lipoprotein Subclasses</title><source>American Chemical Society</source><source>MEDLINE</source><creator>Silva, Amanda R. M ; Toyoshima, Marcos T. K ; Passarelli, Marisa ; Di Mascio, Paolo ; Ronsein, Graziella E</creator><creatorcontrib>Silva, Amanda R. M ; Toyoshima, Marcos T. K ; Passarelli, Marisa ; Di Mascio, Paolo ; Ronsein, Graziella E</creatorcontrib><description>High-density lipoprotein (HDL) is a diverse group of particles with multiple cardioprotective functions. HDL proteome follows HDL particle complexity. Many proteins were described in HDL, but consistent quantification of HDL protein cargo is still a challenge. To address this issue, the aim of this work was to compare data-independent acquisition (DIA) and parallel reaction monitoring (PRM) methodologies in their abilities to differentiate HDL subclasses through their proteomes. To this end, we first evaluated the analytical performances of DIA and PRM using labeled peptides in pooled digested HDL as a biological matrix. Next, we compared the quantification capabilities of the two methodologies for 24 proteins found in HDL2 and HDL3 from 19 apparently healthy subjects. DIA and PRM exhibited comparable linearity, accuracy, and precision. Moreover, both methodologies worked equally well, differentiating HDL subclasses’ proteomes with high precision. Our findings may help to understand HDL functional diversity.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.9b00511</identifier><identifier>PMID: 31697504</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adult ; Aged ; Calibration ; Chromatography, High Pressure Liquid - methods ; Humans ; Limit of Detection ; Lipoproteins, HDL - blood ; Lipoproteins, HDL2 - blood ; Lipoproteins, HDL3 - blood ; Middle Aged ; Proteomics - methods ; Proteomics - statistics &amp; numerical data ; Quality Control ; Tandem Mass Spectrometry - methods ; Workflow ; Young Adult</subject><ispartof>Journal of proteome research, 2020-01, Vol.19 (1), p.248-259</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-aa09b76052bc6f026dccdfe38028e021adcafe90ae4d783506eb7aee5f370ad03</citedby><cites>FETCH-LOGICAL-a351t-aa09b76052bc6f026dccdfe38028e021adcafe90ae4d783506eb7aee5f370ad03</cites><orcidid>0000-0003-4125-8350 ; 0000-0002-9146-4606 ; 0000-0002-9001-5999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.9b00511$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.9b00511$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31697504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva, Amanda R. M</creatorcontrib><creatorcontrib>Toyoshima, Marcos T. K</creatorcontrib><creatorcontrib>Passarelli, Marisa</creatorcontrib><creatorcontrib>Di Mascio, Paolo</creatorcontrib><creatorcontrib>Ronsein, Graziella E</creatorcontrib><title>Comparing Data-Independent Acquisition and Parallel Reaction Monitoring in Their Abilities To Differentiate High-Density Lipoprotein Subclasses</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>High-density lipoprotein (HDL) is a diverse group of particles with multiple cardioprotective functions. HDL proteome follows HDL particle complexity. Many proteins were described in HDL, but consistent quantification of HDL protein cargo is still a challenge. To address this issue, the aim of this work was to compare data-independent acquisition (DIA) and parallel reaction monitoring (PRM) methodologies in their abilities to differentiate HDL subclasses through their proteomes. To this end, we first evaluated the analytical performances of DIA and PRM using labeled peptides in pooled digested HDL as a biological matrix. Next, we compared the quantification capabilities of the two methodologies for 24 proteins found in HDL2 and HDL3 from 19 apparently healthy subjects. DIA and PRM exhibited comparable linearity, accuracy, and precision. Moreover, both methodologies worked equally well, differentiating HDL subclasses’ proteomes with high precision. Our findings may help to understand HDL functional diversity.</description><subject>Adult</subject><subject>Aged</subject><subject>Calibration</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Humans</subject><subject>Limit of Detection</subject><subject>Lipoproteins, HDL - blood</subject><subject>Lipoproteins, HDL2 - blood</subject><subject>Lipoproteins, HDL3 - blood</subject><subject>Middle Aged</subject><subject>Proteomics - methods</subject><subject>Proteomics - statistics &amp; numerical data</subject><subject>Quality Control</subject><subject>Tandem Mass Spectrometry - methods</subject><subject>Workflow</subject><subject>Young Adult</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1u2zAQhYmiQZ2mOUILLruROxRD_SwNu4kNuEiQOmthRI0SGhKpkNIip-iVw9hOtt0MB8T7HofzGPsuYC4gFb9Qh_l-8G4k19O8rAGUEJ_YuVBSJbKE_PN7X5Ryxr6GsAcQKgf5hc2kyMpcwdU5-7d0_YDe2Ee-whGTjW1ooFjsyBf6eTLBjMZZjrbhd-ix66jj94T6cPvHWTO6A20s3z2R8XxRmy4yFPjO8ZVpW_LRzOBIfG0en5IV2ej5wrdmcIf5I_l3qnWHIVD4xs5a7AJdns4L9nD9e7dcJ9vbm81ysU1QKjEmiFDWeQYqrXXWQpo1WjctyQLSguJ6sNHYUglIV01eSAUZ1TkSqVbmgA3IC_bz6BtHeJ4ojFVvgqauQ0tuClUqhZSqhCKLUnWUau9C8NRWgzc9-pdKQPWWRRWzqD6yqE5ZRO7H6Ymp7qn5oN6XHwXiKDjwbvI2_vg_pq_LBp4R</recordid><startdate>20200103</startdate><enddate>20200103</enddate><creator>Silva, Amanda R. M</creator><creator>Toyoshima, Marcos T. K</creator><creator>Passarelli, Marisa</creator><creator>Di Mascio, Paolo</creator><creator>Ronsein, Graziella E</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4125-8350</orcidid><orcidid>https://orcid.org/0000-0002-9146-4606</orcidid><orcidid>https://orcid.org/0000-0002-9001-5999</orcidid></search><sort><creationdate>20200103</creationdate><title>Comparing Data-Independent Acquisition and Parallel Reaction Monitoring in Their Abilities To Differentiate High-Density Lipoprotein Subclasses</title><author>Silva, Amanda R. M ; Toyoshima, Marcos T. K ; Passarelli, Marisa ; Di Mascio, Paolo ; Ronsein, Graziella E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-aa09b76052bc6f026dccdfe38028e021adcafe90ae4d783506eb7aee5f370ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Calibration</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Humans</topic><topic>Limit of Detection</topic><topic>Lipoproteins, HDL - blood</topic><topic>Lipoproteins, HDL2 - blood</topic><topic>Lipoproteins, HDL3 - blood</topic><topic>Middle Aged</topic><topic>Proteomics - methods</topic><topic>Proteomics - statistics &amp; numerical data</topic><topic>Quality Control</topic><topic>Tandem Mass Spectrometry - methods</topic><topic>Workflow</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Amanda R. M</creatorcontrib><creatorcontrib>Toyoshima, Marcos T. K</creatorcontrib><creatorcontrib>Passarelli, Marisa</creatorcontrib><creatorcontrib>Di Mascio, Paolo</creatorcontrib><creatorcontrib>Ronsein, Graziella E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Amanda R. M</au><au>Toyoshima, Marcos T. K</au><au>Passarelli, Marisa</au><au>Di Mascio, Paolo</au><au>Ronsein, Graziella E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing Data-Independent Acquisition and Parallel Reaction Monitoring in Their Abilities To Differentiate High-Density Lipoprotein Subclasses</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2020-01-03</date><risdate>2020</risdate><volume>19</volume><issue>1</issue><spage>248</spage><epage>259</epage><pages>248-259</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>High-density lipoprotein (HDL) is a diverse group of particles with multiple cardioprotective functions. HDL proteome follows HDL particle complexity. Many proteins were described in HDL, but consistent quantification of HDL protein cargo is still a challenge. To address this issue, the aim of this work was to compare data-independent acquisition (DIA) and parallel reaction monitoring (PRM) methodologies in their abilities to differentiate HDL subclasses through their proteomes. To this end, we first evaluated the analytical performances of DIA and PRM using labeled peptides in pooled digested HDL as a biological matrix. Next, we compared the quantification capabilities of the two methodologies for 24 proteins found in HDL2 and HDL3 from 19 apparently healthy subjects. DIA and PRM exhibited comparable linearity, accuracy, and precision. Moreover, both methodologies worked equally well, differentiating HDL subclasses’ proteomes with high precision. Our findings may help to understand HDL functional diversity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31697504</pmid><doi>10.1021/acs.jproteome.9b00511</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4125-8350</orcidid><orcidid>https://orcid.org/0000-0002-9146-4606</orcidid><orcidid>https://orcid.org/0000-0002-9001-5999</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2020-01, Vol.19 (1), p.248-259
issn 1535-3893
1535-3907
language eng
recordid cdi_proquest_miscellaneous_2313359086
source American Chemical Society; MEDLINE
subjects Adult
Aged
Calibration
Chromatography, High Pressure Liquid - methods
Humans
Limit of Detection
Lipoproteins, HDL - blood
Lipoproteins, HDL2 - blood
Lipoproteins, HDL3 - blood
Middle Aged
Proteomics - methods
Proteomics - statistics & numerical data
Quality Control
Tandem Mass Spectrometry - methods
Workflow
Young Adult
title Comparing Data-Independent Acquisition and Parallel Reaction Monitoring in Their Abilities To Differentiate High-Density Lipoprotein Subclasses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20Data-Independent%20Acquisition%20and%20Parallel%20Reaction%20Monitoring%20in%20Their%20Abilities%20To%20Differentiate%20High-Density%20Lipoprotein%20Subclasses&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Silva,%20Amanda%20R.%20M&rft.date=2020-01-03&rft.volume=19&rft.issue=1&rft.spage=248&rft.epage=259&rft.pages=248-259&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.9b00511&rft_dat=%3Cproquest_cross%3E2313359086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313359086&rft_id=info:pmid/31697504&rfr_iscdi=true