Strategies for improving the sustainability of structural metals
Metallic materials have enabled technological progress over thousands of years. The accelerated demand for structural (that is, load-bearing) alloys in key sectors such as energy, construction, safety and transportation is resulting in predicted production growth rates of up to 200 per cent until 20...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2019-11, Vol.575 (7781), p.64-74 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 7781 |
container_start_page | 64 |
container_title | Nature (London) |
container_volume | 575 |
creator | Raabe, Dierk Tasan, C. Cem Olivetti, Elsa A. |
description | Metallic materials have enabled technological progress over thousands of years. The accelerated demand for structural (that is, load-bearing) alloys in key sectors such as energy, construction, safety and transportation is resulting in predicted production growth rates of up to 200 per cent until 2050. Yet most of these materials require a lot of energy when extracted and manufactured and these processes emit large amounts of greenhouse gases and pollution. Here we review methods of improving the direct sustainability of structural metals, in areas including reduced-carbon-dioxide primary production, recycling, scrap-compatible alloy design, contaminant tolerance of alloys and improved alloy longevity. We discuss the effectiveness and technological readiness of individual measures and also show how novel structural materials enable improved energy efficiency through their reduced mass, higher thermal stability and better mechanical properties than currently available alloys.
Structural metals enable improved energy efficiency through their reduced mass, higher thermal stability and better mechanical properties; here, methods of improving the sustainability of structural metals, from recycling to contaminant tolerance, are described. |
doi_str_mv | 10.1038/s41586-019-1702-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2312811680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A640675885</galeid><sourcerecordid>A640675885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c705t-75b7e5519993d6b3814a4c76526adc982ab2efb72f77b3aaee147847bc9218d73</originalsourceid><addsrcrecordid>eNp1kltLHTEUhUOx6NH6A_oig32xD7G5TC7zVpFqBaFQ2-eQyewZI3M5JplS_30zHFt7yil52JB8e-2dxULoLSXnlHD9IZZUaIkJrTBVhGHxCq1oqSQupVZ7aEUI05hoLg_QYYwPhBBBVbmPDjiVlWCkWqGPdynYBJ2HWLRTKPywDtMPP3ZFuocizjFZP9ra9z49FVNbxBRml-Zg-2KAZPv4Br1uc4Hj53qEvl99-nb5Gd9-ub65vLjFThGRsBK1AiFoVVW8kTXXtLSlU1IwaRtXaWZrBm2tWKtUza0FyB_RpapdxahuFD9CZxvdvN_jDDGZwUcHfW9HmOZoGKdMUyo1yei7f9CHaQ5j3m6hBOF5HH-hOtuD8WM7ZSfcImouZEmkElqLTOEdVAcjZAumEVqfr7f40x28W_tH8zd0vgPKp4HBu52q77caMpPgZ-rsHKO5ufu6zdIN68IUY4DWrIMfbHgylJglNmYTG5NjY5bYmKXn5NmxuR6g-dPxOycZYBsg5qexg_Bi6f9VfwFeO8hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315039823</pqid></control><display><type>article</type><title>Strategies for improving the sustainability of structural metals</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Raabe, Dierk ; Tasan, C. Cem ; Olivetti, Elsa A.</creator><creatorcontrib>Raabe, Dierk ; Tasan, C. Cem ; Olivetti, Elsa A.</creatorcontrib><description>Metallic materials have enabled technological progress over thousands of years. The accelerated demand for structural (that is, load-bearing) alloys in key sectors such as energy, construction, safety and transportation is resulting in predicted production growth rates of up to 200 per cent until 2050. Yet most of these materials require a lot of energy when extracted and manufactured and these processes emit large amounts of greenhouse gases and pollution. Here we review methods of improving the direct sustainability of structural metals, in areas including reduced-carbon-dioxide primary production, recycling, scrap-compatible alloy design, contaminant tolerance of alloys and improved alloy longevity. We discuss the effectiveness and technological readiness of individual measures and also show how novel structural materials enable improved energy efficiency through their reduced mass, higher thermal stability and better mechanical properties than currently available alloys.
Structural metals enable improved energy efficiency through their reduced mass, higher thermal stability and better mechanical properties; here, methods of improving the sustainability of structural metals, from recycling to contaminant tolerance, are described.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1702-5</identifier><identifier>PMID: 31695209</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/301/1023 ; 639/301/1023/1026 ; Additive manufacturing ; Alloy development ; Alloys ; Carbon dioxide ; Contaminants ; Corrosion ; Design for recycling ; Energy efficiency ; Environmental impact ; Green building (Construction) ; Greenhouse effect ; Greenhouse gases ; Growth rate ; Humanities and Social Sciences ; Industrial plant emissions ; Lasers ; Load bearing elements ; Mechanical properties ; Metal scrap ; Metals ; Methods ; multidisciplinary ; Primary production ; Review ; review-article ; Science ; Science (multidisciplinary) ; Stainless steel ; Sustainability ; Thermal stability</subject><ispartof>Nature (London), 2019-11, Vol.575 (7781), p.64-74</ispartof><rights>Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 7, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c705t-75b7e5519993d6b3814a4c76526adc982ab2efb72f77b3aaee147847bc9218d73</citedby><cites>FETCH-LOGICAL-c705t-75b7e5519993d6b3814a4c76526adc982ab2efb72f77b3aaee147847bc9218d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31695209$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raabe, Dierk</creatorcontrib><creatorcontrib>Tasan, C. Cem</creatorcontrib><creatorcontrib>Olivetti, Elsa A.</creatorcontrib><title>Strategies for improving the sustainability of structural metals</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Metallic materials have enabled technological progress over thousands of years. The accelerated demand for structural (that is, load-bearing) alloys in key sectors such as energy, construction, safety and transportation is resulting in predicted production growth rates of up to 200 per cent until 2050. Yet most of these materials require a lot of energy when extracted and manufactured and these processes emit large amounts of greenhouse gases and pollution. Here we review methods of improving the direct sustainability of structural metals, in areas including reduced-carbon-dioxide primary production, recycling, scrap-compatible alloy design, contaminant tolerance of alloys and improved alloy longevity. We discuss the effectiveness and technological readiness of individual measures and also show how novel structural materials enable improved energy efficiency through their reduced mass, higher thermal stability and better mechanical properties than currently available alloys.
Structural metals enable improved energy efficiency through their reduced mass, higher thermal stability and better mechanical properties; here, methods of improving the sustainability of structural metals, from recycling to contaminant tolerance, are described.</description><subject>639/301</subject><subject>639/301/1023</subject><subject>639/301/1023/1026</subject><subject>Additive manufacturing</subject><subject>Alloy development</subject><subject>Alloys</subject><subject>Carbon dioxide</subject><subject>Contaminants</subject><subject>Corrosion</subject><subject>Design for recycling</subject><subject>Energy efficiency</subject><subject>Environmental impact</subject><subject>Green building (Construction)</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Growth rate</subject><subject>Humanities and Social Sciences</subject><subject>Industrial plant emissions</subject><subject>Lasers</subject><subject>Load bearing elements</subject><subject>Mechanical properties</subject><subject>Metal scrap</subject><subject>Metals</subject><subject>Methods</subject><subject>multidisciplinary</subject><subject>Primary production</subject><subject>Review</subject><subject>review-article</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stainless steel</subject><subject>Sustainability</subject><subject>Thermal stability</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kltLHTEUhUOx6NH6A_oig32xD7G5TC7zVpFqBaFQ2-eQyewZI3M5JplS_30zHFt7yil52JB8e-2dxULoLSXnlHD9IZZUaIkJrTBVhGHxCq1oqSQupVZ7aEUI05hoLg_QYYwPhBBBVbmPDjiVlWCkWqGPdynYBJ2HWLRTKPywDtMPP3ZFuocizjFZP9ra9z49FVNbxBRml-Zg-2KAZPv4Br1uc4Hj53qEvl99-nb5Gd9-ub65vLjFThGRsBK1AiFoVVW8kTXXtLSlU1IwaRtXaWZrBm2tWKtUza0FyB_RpapdxahuFD9CZxvdvN_jDDGZwUcHfW9HmOZoGKdMUyo1yei7f9CHaQ5j3m6hBOF5HH-hOtuD8WM7ZSfcImouZEmkElqLTOEdVAcjZAumEVqfr7f40x28W_tH8zd0vgPKp4HBu52q77caMpPgZ-rsHKO5ufu6zdIN68IUY4DWrIMfbHgylJglNmYTG5NjY5bYmKXn5NmxuR6g-dPxOycZYBsg5qexg_Bi6f9VfwFeO8hg</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Raabe, Dierk</creator><creator>Tasan, C. Cem</creator><creator>Olivetti, Elsa A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201911</creationdate><title>Strategies for improving the sustainability of structural metals</title><author>Raabe, Dierk ; Tasan, C. Cem ; Olivetti, Elsa A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c705t-75b7e5519993d6b3814a4c76526adc982ab2efb72f77b3aaee147847bc9218d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301</topic><topic>639/301/1023</topic><topic>639/301/1023/1026</topic><topic>Additive manufacturing</topic><topic>Alloy development</topic><topic>Alloys</topic><topic>Carbon dioxide</topic><topic>Contaminants</topic><topic>Corrosion</topic><topic>Design for recycling</topic><topic>Energy efficiency</topic><topic>Environmental impact</topic><topic>Green building (Construction)</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Growth rate</topic><topic>Humanities and Social Sciences</topic><topic>Industrial plant emissions</topic><topic>Lasers</topic><topic>Load bearing elements</topic><topic>Mechanical properties</topic><topic>Metal scrap</topic><topic>Metals</topic><topic>Methods</topic><topic>multidisciplinary</topic><topic>Primary production</topic><topic>Review</topic><topic>review-article</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stainless steel</topic><topic>Sustainability</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raabe, Dierk</creatorcontrib><creatorcontrib>Tasan, C. Cem</creatorcontrib><creatorcontrib>Olivetti, Elsa A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raabe, Dierk</au><au>Tasan, C. Cem</au><au>Olivetti, Elsa A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategies for improving the sustainability of structural metals</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-11</date><risdate>2019</risdate><volume>575</volume><issue>7781</issue><spage>64</spage><epage>74</epage><pages>64-74</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Metallic materials have enabled technological progress over thousands of years. The accelerated demand for structural (that is, load-bearing) alloys in key sectors such as energy, construction, safety and transportation is resulting in predicted production growth rates of up to 200 per cent until 2050. Yet most of these materials require a lot of energy when extracted and manufactured and these processes emit large amounts of greenhouse gases and pollution. Here we review methods of improving the direct sustainability of structural metals, in areas including reduced-carbon-dioxide primary production, recycling, scrap-compatible alloy design, contaminant tolerance of alloys and improved alloy longevity. We discuss the effectiveness and technological readiness of individual measures and also show how novel structural materials enable improved energy efficiency through their reduced mass, higher thermal stability and better mechanical properties than currently available alloys.
Structural metals enable improved energy efficiency through their reduced mass, higher thermal stability and better mechanical properties; here, methods of improving the sustainability of structural metals, from recycling to contaminant tolerance, are described.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31695209</pmid><doi>10.1038/s41586-019-1702-5</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2019-11, Vol.575 (7781), p.64-74 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2312811680 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/301 639/301/1023 639/301/1023/1026 Additive manufacturing Alloy development Alloys Carbon dioxide Contaminants Corrosion Design for recycling Energy efficiency Environmental impact Green building (Construction) Greenhouse effect Greenhouse gases Growth rate Humanities and Social Sciences Industrial plant emissions Lasers Load bearing elements Mechanical properties Metal scrap Metals Methods multidisciplinary Primary production Review review-article Science Science (multidisciplinary) Stainless steel Sustainability Thermal stability |
title | Strategies for improving the sustainability of structural metals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategies%20for%20improving%20the%20sustainability%20of%20structural%20metals&rft.jtitle=Nature%20(London)&rft.au=Raabe,%20Dierk&rft.date=2019-11&rft.volume=575&rft.issue=7781&rft.spage=64&rft.epage=74&rft.pages=64-74&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1702-5&rft_dat=%3Cgale_proqu%3EA640675885%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315039823&rft_id=info:pmid/31695209&rft_galeid=A640675885&rfr_iscdi=true |