Post-translational Modifications of Nucleotide Excision Repair Proteins and Their Role in the DNA Repair

Nucleotide excision repair (NER) is one of the major DNA repair pathways aimed at maintaining genome stability. Correction of DNA damage by the NER system is a multistage process that proceeds with the formation of multiple DNA-protein and protein-protein intermediate complexes and requires precise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Moscow) 2019-09, Vol.84 (9), p.1008-1020
Hauptverfasser: Rechkunova, N. I., Maltseva, E. A., Lavrik, O. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1020
container_issue 9
container_start_page 1008
container_title Biochemistry (Moscow)
container_volume 84
creator Rechkunova, N. I.
Maltseva, E. A.
Lavrik, O. I.
description Nucleotide excision repair (NER) is one of the major DNA repair pathways aimed at maintaining genome stability. Correction of DNA damage by the NER system is a multistage process that proceeds with the formation of multiple DNA-protein and protein-protein intermediate complexes and requires precise coordination and regulation. NER proteins undergo post-translational modifications, such as ubiquitination, sumoylation, phosphorylation, acetylation, and poly(ADP-ribosyl)ation. These modifications affect the interaction of NER factors with DNA and other proteins and thus regulate either their recruitment into the complexes or dissociation from these complexes at certain stages of DNA repair, as well as modulate the functional activity of NER proteins and control the process of DNA repair in general. Here, we review the data on the post-translational modifications of NER factors and their effects on DNA repair. Protein poly(ADP-ribosyl)ation catalyzed by poly(ADP-ribose) polymerase 1 and its impact on NER are discussed in detail, since such analysis has not been done before.
doi_str_mv 10.1134/S0006297919090037
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2312807825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A602716759</galeid><sourcerecordid>A602716759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-aea1280325aacfd7eef05bb428307c0d47994ac3a091542056997e31a6b2bdc33</originalsourceid><addsrcrecordid>eNp1kUlPwzAQhS0EEqXwA7hZ4sIlZWwncXys2KWyiOUcuc6kNUrjYqcS_HscilSxyQdr3nzvaTRDyCGDEWMiPXkEgJwrqZgCBSDkFhmwHIpEQArbZNC3k76_S_ZCeIklByUGZH7vQpd0Xreh0Z11rW7ojatsbc1nGair6e3KNOg6WyE9fzM2RJ0-4FJbT--969BGTLcVfZpjlB5cg9S2tJsjPbsdf5H7ZKfWTcCDr39Ini_On06vksnd5fXpeJKYlOVdolEzXoDgmdamriRiDdl0mvJCgDRQpVKpVBuhQbEs5ZDlSkkUTOdTPq2MEENyvM5deve6wtCVCxsMNo1u0a1CyUWfLwueRfToB_riVj5uIFK8UIIDY3xDzXSDpW1rF7dl-tBynAOXLJeZitToDyq-ChfWuBZrG_VvBrY2GO9C8FiXS28X2r-XDMr-pOWvk0YPX3tCZNsZ-s3A_5s-AM3HoCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289320112</pqid></control><display><type>article</type><title>Post-translational Modifications of Nucleotide Excision Repair Proteins and Their Role in the DNA Repair</title><source>SpringerLink Journals</source><creator>Rechkunova, N. I. ; Maltseva, E. A. ; Lavrik, O. I.</creator><creatorcontrib>Rechkunova, N. I. ; Maltseva, E. A. ; Lavrik, O. I.</creatorcontrib><description>Nucleotide excision repair (NER) is one of the major DNA repair pathways aimed at maintaining genome stability. Correction of DNA damage by the NER system is a multistage process that proceeds with the formation of multiple DNA-protein and protein-protein intermediate complexes and requires precise coordination and regulation. NER proteins undergo post-translational modifications, such as ubiquitination, sumoylation, phosphorylation, acetylation, and poly(ADP-ribosyl)ation. These modifications affect the interaction of NER factors with DNA and other proteins and thus regulate either their recruitment into the complexes or dissociation from these complexes at certain stages of DNA repair, as well as modulate the functional activity of NER proteins and control the process of DNA repair in general. Here, we review the data on the post-translational modifications of NER factors and their effects on DNA repair. Protein poly(ADP-ribosyl)ation catalyzed by poly(ADP-ribose) polymerase 1 and its impact on NER are discussed in detail, since such analysis has not been done before.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297919090037</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acetylation ; Adenosine diphosphate ; ADP-ribosylation ; Analysis ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Coordination compounds ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA repair ; Excision (Surgery) ; Genomes ; Life Sciences ; Methods ; Microbiology ; Nucleotide excision repair ; Nucleotides ; Phosphorylation ; Poly(ADP-ribose) ; Poly(ADP-ribose) polymerase ; Post-translation ; Post-translational modification ; Protein biosynthesis ; Proteins ; Repair ; Review ; Ribose ; SUMO protein ; Translation ; Ubiquitination</subject><ispartof>Biochemistry (Moscow), 2019-09, Vol.84 (9), p.1008-1020</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Biochemistry (Moscow) is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-aea1280325aacfd7eef05bb428307c0d47994ac3a091542056997e31a6b2bdc33</citedby><cites>FETCH-LOGICAL-c416t-aea1280325aacfd7eef05bb428307c0d47994ac3a091542056997e31a6b2bdc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0006297919090037$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0006297919090037$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Rechkunova, N. I.</creatorcontrib><creatorcontrib>Maltseva, E. A.</creatorcontrib><creatorcontrib>Lavrik, O. I.</creatorcontrib><title>Post-translational Modifications of Nucleotide Excision Repair Proteins and Their Role in the DNA Repair</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><description>Nucleotide excision repair (NER) is one of the major DNA repair pathways aimed at maintaining genome stability. Correction of DNA damage by the NER system is a multistage process that proceeds with the formation of multiple DNA-protein and protein-protein intermediate complexes and requires precise coordination and regulation. NER proteins undergo post-translational modifications, such as ubiquitination, sumoylation, phosphorylation, acetylation, and poly(ADP-ribosyl)ation. These modifications affect the interaction of NER factors with DNA and other proteins and thus regulate either their recruitment into the complexes or dissociation from these complexes at certain stages of DNA repair, as well as modulate the functional activity of NER proteins and control the process of DNA repair in general. Here, we review the data on the post-translational modifications of NER factors and their effects on DNA repair. Protein poly(ADP-ribosyl)ation catalyzed by poly(ADP-ribose) polymerase 1 and its impact on NER are discussed in detail, since such analysis has not been done before.</description><subject>Acetylation</subject><subject>Adenosine diphosphate</subject><subject>ADP-ribosylation</subject><subject>Analysis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Coordination compounds</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>Excision (Surgery)</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Microbiology</subject><subject>Nucleotide excision repair</subject><subject>Nucleotides</subject><subject>Phosphorylation</subject><subject>Poly(ADP-ribose)</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Post-translation</subject><subject>Post-translational modification</subject><subject>Protein biosynthesis</subject><subject>Proteins</subject><subject>Repair</subject><subject>Review</subject><subject>Ribose</subject><subject>SUMO protein</subject><subject>Translation</subject><subject>Ubiquitination</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUlPwzAQhS0EEqXwA7hZ4sIlZWwncXys2KWyiOUcuc6kNUrjYqcS_HscilSxyQdr3nzvaTRDyCGDEWMiPXkEgJwrqZgCBSDkFhmwHIpEQArbZNC3k76_S_ZCeIklByUGZH7vQpd0Xreh0Z11rW7ojatsbc1nGair6e3KNOg6WyE9fzM2RJ0-4FJbT--969BGTLcVfZpjlB5cg9S2tJsjPbsdf5H7ZKfWTcCDr39Ini_On06vksnd5fXpeJKYlOVdolEzXoDgmdamriRiDdl0mvJCgDRQpVKpVBuhQbEs5ZDlSkkUTOdTPq2MEENyvM5deve6wtCVCxsMNo1u0a1CyUWfLwueRfToB_riVj5uIFK8UIIDY3xDzXSDpW1rF7dl-tBynAOXLJeZitToDyq-ChfWuBZrG_VvBrY2GO9C8FiXS28X2r-XDMr-pOWvk0YPX3tCZNsZ-s3A_5s-AM3HoCA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Rechkunova, N. I.</creator><creator>Maltseva, E. A.</creator><creator>Lavrik, O. I.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20190901</creationdate><title>Post-translational Modifications of Nucleotide Excision Repair Proteins and Their Role in the DNA Repair</title><author>Rechkunova, N. I. ; Maltseva, E. A. ; Lavrik, O. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-aea1280325aacfd7eef05bb428307c0d47994ac3a091542056997e31a6b2bdc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetylation</topic><topic>Adenosine diphosphate</topic><topic>ADP-ribosylation</topic><topic>Analysis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Coordination compounds</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>Excision (Surgery)</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Microbiology</topic><topic>Nucleotide excision repair</topic><topic>Nucleotides</topic><topic>Phosphorylation</topic><topic>Poly(ADP-ribose)</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Post-translation</topic><topic>Post-translational modification</topic><topic>Protein biosynthesis</topic><topic>Proteins</topic><topic>Repair</topic><topic>Review</topic><topic>Ribose</topic><topic>SUMO protein</topic><topic>Translation</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rechkunova, N. I.</creatorcontrib><creatorcontrib>Maltseva, E. A.</creatorcontrib><creatorcontrib>Lavrik, O. I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rechkunova, N. I.</au><au>Maltseva, E. A.</au><au>Lavrik, O. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-translational Modifications of Nucleotide Excision Repair Proteins and Their Role in the DNA Repair</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>84</volume><issue>9</issue><spage>1008</spage><epage>1020</epage><pages>1008-1020</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>Nucleotide excision repair (NER) is one of the major DNA repair pathways aimed at maintaining genome stability. Correction of DNA damage by the NER system is a multistage process that proceeds with the formation of multiple DNA-protein and protein-protein intermediate complexes and requires precise coordination and regulation. NER proteins undergo post-translational modifications, such as ubiquitination, sumoylation, phosphorylation, acetylation, and poly(ADP-ribosyl)ation. These modifications affect the interaction of NER factors with DNA and other proteins and thus regulate either their recruitment into the complexes or dissociation from these complexes at certain stages of DNA repair, as well as modulate the functional activity of NER proteins and control the process of DNA repair in general. Here, we review the data on the post-translational modifications of NER factors and their effects on DNA repair. Protein poly(ADP-ribosyl)ation catalyzed by poly(ADP-ribose) polymerase 1 and its impact on NER are discussed in detail, since such analysis has not been done before.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0006297919090037</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2979
ispartof Biochemistry (Moscow), 2019-09, Vol.84 (9), p.1008-1020
issn 0006-2979
1608-3040
language eng
recordid cdi_proquest_miscellaneous_2312807825
source SpringerLink Journals
subjects Acetylation
Adenosine diphosphate
ADP-ribosylation
Analysis
Biochemistry
Biomedical and Life Sciences
Biomedicine
Bioorganic Chemistry
Coordination compounds
Deoxyribonucleic acid
DNA
DNA damage
DNA repair
Excision (Surgery)
Genomes
Life Sciences
Methods
Microbiology
Nucleotide excision repair
Nucleotides
Phosphorylation
Poly(ADP-ribose)
Poly(ADP-ribose) polymerase
Post-translation
Post-translational modification
Protein biosynthesis
Proteins
Repair
Review
Ribose
SUMO protein
Translation
Ubiquitination
title Post-translational Modifications of Nucleotide Excision Repair Proteins and Their Role in the DNA Repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-translational%20Modifications%20of%20Nucleotide%20Excision%20Repair%20Proteins%20and%20Their%20Role%20in%20the%20DNA%20Repair&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Rechkunova,%20N.%20I.&rft.date=2019-09-01&rft.volume=84&rft.issue=9&rft.spage=1008&rft.epage=1020&rft.pages=1008-1020&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297919090037&rft_dat=%3Cgale_proqu%3EA602716759%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289320112&rft_id=info:pmid/&rft_galeid=A602716759&rfr_iscdi=true