scGEAToolbox: a Matlab toolbox for single-cell RNA sequencing data analysis

Abstract Motivation Single-cell RNA sequencing (scRNA-seq) technology has revolutionized the way research is done in biomedical sciences. It provides an unprecedented level of resolution across individual cells for studying cell heterogeneity and gene expression variability. Analyzing scRNA-seq data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2019-11, Vol.36 (6), p.1948-1949
1. Verfasser: Cai, James J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1949
container_issue 6
container_start_page 1948
container_title Bioinformatics
container_volume 36
creator Cai, James J
description Abstract Motivation Single-cell RNA sequencing (scRNA-seq) technology has revolutionized the way research is done in biomedical sciences. It provides an unprecedented level of resolution across individual cells for studying cell heterogeneity and gene expression variability. Analyzing scRNA-seq data is challenging though, due to the sparsity and high dimensionality of the data. Results I developed scGEAToolbox—a Matlab toolbox for scRNA-seq data analysis. It contains a comprehensive set of functions for data normalization, feature selection, batch correction, imputation, cell clustering, trajectory/pseudotime analysis and network construction, which can be combined and integrated to building custom workflow. Although most of the functions are implemented in native Matlab, wrapper functions are provided to allow users to call the ‘third-party’ tools developed in Matlab or other languages. Furthermore, scGEAToolbox is equipped with sophisticated graphical user interfaces generated with App Designer, making it an easy-to-use application for quick data processing. Availability and implementation https://github.com/jamesjcai/scGEAToolbox. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btz830
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2312804990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz830</oup_id><sourcerecordid>2312804990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-207c33fde7251055c3159d540244a45e7dace896f55b053687d19cd4f38ff15a3</originalsourceid><addsrcrecordid>eNqNUF1LwzAUDaK4Of0JSh59qbtpkrbxbYw5xakg87mkaSKRtplNC5u_3oxOwTef7uVwvjgIXRK4ISDotLDONsa1teys8tOi-8ooHKExYQlEMXBxHH6apBHLgI7QmfcfAJwwxk7RiJJEpJSTMXr0armYrZ2rCre9xRI_ya6SBe4GBIcE7G3zXulI6arCr88z7PVnrxsVUFzKTmLZyGrnrT9HJ0ZWXl8c7gS93S3W8_to9bJ8mM9WkWIJ7UK5VFFqSp3GnADnihIuSs4gZkwyrtNSKp2JxHBeAKdJlpZEqJIZmhlDuKQTdD34bloXmvgur63ft5ONdr3PY0riDJgQEKh8oKrWed9qk29aW8t2lxPI9zvmf3fMhx2D7uoQ0Re1Ln9VP8MFAgwE12_-6fkNlVmEeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312804990</pqid></control><display><type>article</type><title>scGEAToolbox: a Matlab toolbox for single-cell RNA sequencing data analysis</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Cai, James J</creator><contributor>Ponty, Yann</contributor><creatorcontrib>Cai, James J ; Ponty, Yann</creatorcontrib><description>Abstract Motivation Single-cell RNA sequencing (scRNA-seq) technology has revolutionized the way research is done in biomedical sciences. It provides an unprecedented level of resolution across individual cells for studying cell heterogeneity and gene expression variability. Analyzing scRNA-seq data is challenging though, due to the sparsity and high dimensionality of the data. Results I developed scGEAToolbox—a Matlab toolbox for scRNA-seq data analysis. It contains a comprehensive set of functions for data normalization, feature selection, batch correction, imputation, cell clustering, trajectory/pseudotime analysis and network construction, which can be combined and integrated to building custom workflow. Although most of the functions are implemented in native Matlab, wrapper functions are provided to allow users to call the ‘third-party’ tools developed in Matlab or other languages. Furthermore, scGEAToolbox is equipped with sophisticated graphical user interfaces generated with App Designer, making it an easy-to-use application for quick data processing. Availability and implementation https://github.com/jamesjcai/scGEAToolbox. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz830</identifier><identifier>PMID: 31697351</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Bioinformatics, 2019-11, Vol.36 (6), p.1948-1949</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019</rights><rights>The Author(s) (2019). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-207c33fde7251055c3159d540244a45e7dace896f55b053687d19cd4f38ff15a3</citedby><cites>FETCH-LOGICAL-c463t-207c33fde7251055c3159d540244a45e7dace896f55b053687d19cd4f38ff15a3</cites><orcidid>0000-0002-8081-6725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btz830$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31697351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ponty, Yann</contributor><creatorcontrib>Cai, James J</creatorcontrib><title>scGEAToolbox: a Matlab toolbox for single-cell RNA sequencing data analysis</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Single-cell RNA sequencing (scRNA-seq) technology has revolutionized the way research is done in biomedical sciences. It provides an unprecedented level of resolution across individual cells for studying cell heterogeneity and gene expression variability. Analyzing scRNA-seq data is challenging though, due to the sparsity and high dimensionality of the data. Results I developed scGEAToolbox—a Matlab toolbox for scRNA-seq data analysis. It contains a comprehensive set of functions for data normalization, feature selection, batch correction, imputation, cell clustering, trajectory/pseudotime analysis and network construction, which can be combined and integrated to building custom workflow. Although most of the functions are implemented in native Matlab, wrapper functions are provided to allow users to call the ‘third-party’ tools developed in Matlab or other languages. Furthermore, scGEAToolbox is equipped with sophisticated graphical user interfaces generated with App Designer, making it an easy-to-use application for quick data processing. Availability and implementation https://github.com/jamesjcai/scGEAToolbox. Supplementary information Supplementary data are available at Bioinformatics online.</description><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUF1LwzAUDaK4Of0JSh59qbtpkrbxbYw5xakg87mkaSKRtplNC5u_3oxOwTef7uVwvjgIXRK4ISDotLDONsa1teys8tOi-8ooHKExYQlEMXBxHH6apBHLgI7QmfcfAJwwxk7RiJJEpJSTMXr0armYrZ2rCre9xRI_ya6SBe4GBIcE7G3zXulI6arCr88z7PVnrxsVUFzKTmLZyGrnrT9HJ0ZWXl8c7gS93S3W8_to9bJ8mM9WkWIJ7UK5VFFqSp3GnADnihIuSs4gZkwyrtNSKp2JxHBeAKdJlpZEqJIZmhlDuKQTdD34bloXmvgur63ft5ONdr3PY0riDJgQEKh8oKrWed9qk29aW8t2lxPI9zvmf3fMhx2D7uoQ0Re1Ln9VP8MFAgwE12_-6fkNlVmEeA</recordid><startdate>20191107</startdate><enddate>20191107</enddate><creator>Cai, James J</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8081-6725</orcidid></search><sort><creationdate>20191107</creationdate><title>scGEAToolbox: a Matlab toolbox for single-cell RNA sequencing data analysis</title><author>Cai, James J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-207c33fde7251055c3159d540244a45e7dace896f55b053687d19cd4f38ff15a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, James J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cai, James J</au><au>Ponty, Yann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>scGEAToolbox: a Matlab toolbox for single-cell RNA sequencing data analysis</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2019-11-07</date><risdate>2019</risdate><volume>36</volume><issue>6</issue><spage>1948</spage><epage>1949</epage><pages>1948-1949</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Single-cell RNA sequencing (scRNA-seq) technology has revolutionized the way research is done in biomedical sciences. It provides an unprecedented level of resolution across individual cells for studying cell heterogeneity and gene expression variability. Analyzing scRNA-seq data is challenging though, due to the sparsity and high dimensionality of the data. Results I developed scGEAToolbox—a Matlab toolbox for scRNA-seq data analysis. It contains a comprehensive set of functions for data normalization, feature selection, batch correction, imputation, cell clustering, trajectory/pseudotime analysis and network construction, which can be combined and integrated to building custom workflow. Although most of the functions are implemented in native Matlab, wrapper functions are provided to allow users to call the ‘third-party’ tools developed in Matlab or other languages. Furthermore, scGEAToolbox is equipped with sophisticated graphical user interfaces generated with App Designer, making it an easy-to-use application for quick data processing. Availability and implementation https://github.com/jamesjcai/scGEAToolbox. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31697351</pmid><doi>10.1093/bioinformatics/btz830</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-8081-6725</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2019-11, Vol.36 (6), p.1948-1949
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_2312804990
source Access via Oxford University Press (Open Access Collection)
title scGEAToolbox: a Matlab toolbox for single-cell RNA sequencing data analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=scGEAToolbox:%20a%20Matlab%20toolbox%20for%20single-cell%20RNA%20sequencing%20data%20analysis&rft.jtitle=Bioinformatics&rft.au=Cai,%20James%20J&rft.date=2019-11-07&rft.volume=36&rft.issue=6&rft.spage=1948&rft.epage=1949&rft.pages=1948-1949&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btz830&rft_dat=%3Cproquest_TOX%3E2312804990%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312804990&rft_id=info:pmid/31697351&rft_oup_id=10.1093/bioinformatics/btz830&rfr_iscdi=true