A Pyrene–Poly(acrylic acid)–Polyrotaxane Supramolecular Binder Network for High‐Performance Silicon Negative Electrodes
Although being incorporated in commercial lithium‐ion batteries for a while, the weight portion of silicon monoxide (SiOx, x ≈ 1) is only less than 10 wt% due to the insufficient cycle life. Along this line, polymeric binders that can assist in maintaining the mechanical integrity and interfacial st...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2019-12, Vol.31 (51), p.e1905048-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 51 |
container_start_page | e1905048 |
container_title | Advanced materials (Weinheim) |
container_volume | 31 |
creator | Cho, Yunshik Kim, Jaemin Elabd, Ahmed Choi, Sunghun Park, Kiho Kwon, Tae‐woo Lee, Jungmin Char, Kookheon Coskun, Ali Choi, Jang Wook |
description | Although being incorporated in commercial lithium‐ion batteries for a while, the weight portion of silicon monoxide (SiOx, x ≈ 1) is only less than 10 wt% due to the insufficient cycle life. Along this line, polymeric binders that can assist in maintaining the mechanical integrity and interfacial stability of SiOx electrodes are desired to realize higher contents of SiOx. Herein, a pyrene–poly(acrylic acid) (PAA)–polyrotaxane (PR) supramolecular network is reported as a polymeric binder for SiOx with 100 wt%. The noncovalent functionalization of a carbon coating layer on the SiOx is achieved by using a hydroxylated pyrene derivative via the π–π stacking interaction, which simultaneously enables hydrogen bonding interactions with the PR–PAA network through its hydroxyl moiety. Moreover, the PR's ring sliding while being crosslinked to PAA endows a high elasticity to the entire polymer network, effectively buffering the volume expansion of SiOx and largely mitigating the electrode swelling. Based on these extraordinary physicochemical properties of the pyrene–PAA–PR supramolecular binder, the robust cycling of SiOx electrodes is demonstrated at commercial levels of areal loading in both half‐cell and full‐cell configurations.
A supramolecular binder network is introduced to silicon monoxide (SiOx) anodes in Li‐ion batteries. Hydroxylated pyrene attached on the carbon surface of SiOx via π–π interaction strongly interacts with a polyrotaxane‐crosslinked poly(acrylic acid) binder via hydrogen bonding, while the ring sliding motion of the polyrotaxane imparts elasticity in the binder network. These hierarchical supramolecular interactions improve the electrode's integrity, leading to robust cyclability. |
doi_str_mv | 10.1002/adma.201905048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2312555358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327421752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4138-c5bb746ec4f5353e90f440662d5c505cc7203c30ca40bbfeae9a344da1373a373</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi0EokNhyxJFYlMWGa7_kvFyKIUiFRgJWEc3zk1xSeLBTihZIPURkHjDPgmuZigSGxaWZet8R9f-GHvMYckBxHNselwK4AY0qNUdtuBa8FyB0XfZAozUuSnU6oA9iPECAEwBxX12IHlhpJB8wX6ss80caKDrq18b381HaMPcOZuhdc2z_WXwI37HgbIP0zZg7zuyU4che-GGhkL2jsZLH75krQ_ZqTv_fH31c0MhnXocbAq55PNDws5xdN8oO0n5MfiG4kN2r8Uu0qP9fsg-vTr5eHyan71__eZ4fZZbxeUqt7quS1WQVa2WWpKBVikoCtFoq0FbWwqQVoJFBXXdEpJBqVSDXJYS0zpkRzvvNvivE8Wx6l201HXpUX6KVfoKoXVyrxL69B_0wk9hSNMlSpRK8FKLRC13lA0-xkBttQ2uxzBXHKqbYqqbYqrbYlLgyV471T01t_ifJhJgdsCl62j-j65av3y7_iv_DeX2ncg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327421752</pqid></control><display><type>article</type><title>A Pyrene–Poly(acrylic acid)–Polyrotaxane Supramolecular Binder Network for High‐Performance Silicon Negative Electrodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cho, Yunshik ; Kim, Jaemin ; Elabd, Ahmed ; Choi, Sunghun ; Park, Kiho ; Kwon, Tae‐woo ; Lee, Jungmin ; Char, Kookheon ; Coskun, Ali ; Choi, Jang Wook</creator><creatorcontrib>Cho, Yunshik ; Kim, Jaemin ; Elabd, Ahmed ; Choi, Sunghun ; Park, Kiho ; Kwon, Tae‐woo ; Lee, Jungmin ; Char, Kookheon ; Coskun, Ali ; Choi, Jang Wook</creatorcontrib><description>Although being incorporated in commercial lithium‐ion batteries for a while, the weight portion of silicon monoxide (SiOx, x ≈ 1) is only less than 10 wt% due to the insufficient cycle life. Along this line, polymeric binders that can assist in maintaining the mechanical integrity and interfacial stability of SiOx electrodes are desired to realize higher contents of SiOx. Herein, a pyrene–poly(acrylic acid) (PAA)–polyrotaxane (PR) supramolecular network is reported as a polymeric binder for SiOx with 100 wt%. The noncovalent functionalization of a carbon coating layer on the SiOx is achieved by using a hydroxylated pyrene derivative via the π–π stacking interaction, which simultaneously enables hydrogen bonding interactions with the PR–PAA network through its hydroxyl moiety. Moreover, the PR's ring sliding while being crosslinked to PAA endows a high elasticity to the entire polymer network, effectively buffering the volume expansion of SiOx and largely mitigating the electrode swelling. Based on these extraordinary physicochemical properties of the pyrene–PAA–PR supramolecular binder, the robust cycling of SiOx electrodes is demonstrated at commercial levels of areal loading in both half‐cell and full‐cell configurations.
A supramolecular binder network is introduced to silicon monoxide (SiOx) anodes in Li‐ion batteries. Hydroxylated pyrene attached on the carbon surface of SiOx via π–π interaction strongly interacts with a polyrotaxane‐crosslinked poly(acrylic acid) binder via hydrogen bonding, while the ring sliding motion of the polyrotaxane imparts elasticity in the binder network. These hierarchical supramolecular interactions improve the electrode's integrity, leading to robust cyclability.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201905048</identifier><identifier>PMID: 31693231</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acrylics ; Crosslinking ; cyclodextrin ; Elasticity ; Electrodes ; Hydrogen bonding ; Interface stability ; Lithium-ion batteries ; Materials science ; molecular machines ; Polyacrylic acid ; polyrotaxanes ; pyrene ; Silicon ; swelling</subject><ispartof>Advanced materials (Weinheim), 2019-12, Vol.31 (51), p.e1905048-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4138-c5bb746ec4f5353e90f440662d5c505cc7203c30ca40bbfeae9a344da1373a373</citedby><cites>FETCH-LOGICAL-c4138-c5bb746ec4f5353e90f440662d5c505cc7203c30ca40bbfeae9a344da1373a373</cites><orcidid>0000-0001-8783-0901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201905048$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201905048$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31693231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Yunshik</creatorcontrib><creatorcontrib>Kim, Jaemin</creatorcontrib><creatorcontrib>Elabd, Ahmed</creatorcontrib><creatorcontrib>Choi, Sunghun</creatorcontrib><creatorcontrib>Park, Kiho</creatorcontrib><creatorcontrib>Kwon, Tae‐woo</creatorcontrib><creatorcontrib>Lee, Jungmin</creatorcontrib><creatorcontrib>Char, Kookheon</creatorcontrib><creatorcontrib>Coskun, Ali</creatorcontrib><creatorcontrib>Choi, Jang Wook</creatorcontrib><title>A Pyrene–Poly(acrylic acid)–Polyrotaxane Supramolecular Binder Network for High‐Performance Silicon Negative Electrodes</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Although being incorporated in commercial lithium‐ion batteries for a while, the weight portion of silicon monoxide (SiOx, x ≈ 1) is only less than 10 wt% due to the insufficient cycle life. Along this line, polymeric binders that can assist in maintaining the mechanical integrity and interfacial stability of SiOx electrodes are desired to realize higher contents of SiOx. Herein, a pyrene–poly(acrylic acid) (PAA)–polyrotaxane (PR) supramolecular network is reported as a polymeric binder for SiOx with 100 wt%. The noncovalent functionalization of a carbon coating layer on the SiOx is achieved by using a hydroxylated pyrene derivative via the π–π stacking interaction, which simultaneously enables hydrogen bonding interactions with the PR–PAA network through its hydroxyl moiety. Moreover, the PR's ring sliding while being crosslinked to PAA endows a high elasticity to the entire polymer network, effectively buffering the volume expansion of SiOx and largely mitigating the electrode swelling. Based on these extraordinary physicochemical properties of the pyrene–PAA–PR supramolecular binder, the robust cycling of SiOx electrodes is demonstrated at commercial levels of areal loading in both half‐cell and full‐cell configurations.
A supramolecular binder network is introduced to silicon monoxide (SiOx) anodes in Li‐ion batteries. Hydroxylated pyrene attached on the carbon surface of SiOx via π–π interaction strongly interacts with a polyrotaxane‐crosslinked poly(acrylic acid) binder via hydrogen bonding, while the ring sliding motion of the polyrotaxane imparts elasticity in the binder network. These hierarchical supramolecular interactions improve the electrode's integrity, leading to robust cyclability.</description><subject>Acrylics</subject><subject>Crosslinking</subject><subject>cyclodextrin</subject><subject>Elasticity</subject><subject>Electrodes</subject><subject>Hydrogen bonding</subject><subject>Interface stability</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>molecular machines</subject><subject>Polyacrylic acid</subject><subject>polyrotaxanes</subject><subject>pyrene</subject><subject>Silicon</subject><subject>swelling</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAURi0EokNhyxJFYlMWGa7_kvFyKIUiFRgJWEc3zk1xSeLBTihZIPURkHjDPgmuZigSGxaWZet8R9f-GHvMYckBxHNselwK4AY0qNUdtuBa8FyB0XfZAozUuSnU6oA9iPECAEwBxX12IHlhpJB8wX6ss80caKDrq18b381HaMPcOZuhdc2z_WXwI37HgbIP0zZg7zuyU4che-GGhkL2jsZLH75krQ_ZqTv_fH31c0MhnXocbAq55PNDws5xdN8oO0n5MfiG4kN2r8Uu0qP9fsg-vTr5eHyan71__eZ4fZZbxeUqt7quS1WQVa2WWpKBVikoCtFoq0FbWwqQVoJFBXXdEpJBqVSDXJYS0zpkRzvvNvivE8Wx6l201HXpUX6KVfoKoXVyrxL69B_0wk9hSNMlSpRK8FKLRC13lA0-xkBttQ2uxzBXHKqbYqqbYqrbYlLgyV471T01t_ifJhJgdsCl62j-j65av3y7_iv_DeX2ncg</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Cho, Yunshik</creator><creator>Kim, Jaemin</creator><creator>Elabd, Ahmed</creator><creator>Choi, Sunghun</creator><creator>Park, Kiho</creator><creator>Kwon, Tae‐woo</creator><creator>Lee, Jungmin</creator><creator>Char, Kookheon</creator><creator>Coskun, Ali</creator><creator>Choi, Jang Wook</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8783-0901</orcidid></search><sort><creationdate>20191201</creationdate><title>A Pyrene–Poly(acrylic acid)–Polyrotaxane Supramolecular Binder Network for High‐Performance Silicon Negative Electrodes</title><author>Cho, Yunshik ; Kim, Jaemin ; Elabd, Ahmed ; Choi, Sunghun ; Park, Kiho ; Kwon, Tae‐woo ; Lee, Jungmin ; Char, Kookheon ; Coskun, Ali ; Choi, Jang Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4138-c5bb746ec4f5353e90f440662d5c505cc7203c30ca40bbfeae9a344da1373a373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acrylics</topic><topic>Crosslinking</topic><topic>cyclodextrin</topic><topic>Elasticity</topic><topic>Electrodes</topic><topic>Hydrogen bonding</topic><topic>Interface stability</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>molecular machines</topic><topic>Polyacrylic acid</topic><topic>polyrotaxanes</topic><topic>pyrene</topic><topic>Silicon</topic><topic>swelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Yunshik</creatorcontrib><creatorcontrib>Kim, Jaemin</creatorcontrib><creatorcontrib>Elabd, Ahmed</creatorcontrib><creatorcontrib>Choi, Sunghun</creatorcontrib><creatorcontrib>Park, Kiho</creatorcontrib><creatorcontrib>Kwon, Tae‐woo</creatorcontrib><creatorcontrib>Lee, Jungmin</creatorcontrib><creatorcontrib>Char, Kookheon</creatorcontrib><creatorcontrib>Coskun, Ali</creatorcontrib><creatorcontrib>Choi, Jang Wook</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Yunshik</au><au>Kim, Jaemin</au><au>Elabd, Ahmed</au><au>Choi, Sunghun</au><au>Park, Kiho</au><au>Kwon, Tae‐woo</au><au>Lee, Jungmin</au><au>Char, Kookheon</au><au>Coskun, Ali</au><au>Choi, Jang Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pyrene–Poly(acrylic acid)–Polyrotaxane Supramolecular Binder Network for High‐Performance Silicon Negative Electrodes</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>31</volume><issue>51</issue><spage>e1905048</spage><epage>n/a</epage><pages>e1905048-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Although being incorporated in commercial lithium‐ion batteries for a while, the weight portion of silicon monoxide (SiOx, x ≈ 1) is only less than 10 wt% due to the insufficient cycle life. Along this line, polymeric binders that can assist in maintaining the mechanical integrity and interfacial stability of SiOx electrodes are desired to realize higher contents of SiOx. Herein, a pyrene–poly(acrylic acid) (PAA)–polyrotaxane (PR) supramolecular network is reported as a polymeric binder for SiOx with 100 wt%. The noncovalent functionalization of a carbon coating layer on the SiOx is achieved by using a hydroxylated pyrene derivative via the π–π stacking interaction, which simultaneously enables hydrogen bonding interactions with the PR–PAA network through its hydroxyl moiety. Moreover, the PR's ring sliding while being crosslinked to PAA endows a high elasticity to the entire polymer network, effectively buffering the volume expansion of SiOx and largely mitigating the electrode swelling. Based on these extraordinary physicochemical properties of the pyrene–PAA–PR supramolecular binder, the robust cycling of SiOx electrodes is demonstrated at commercial levels of areal loading in both half‐cell and full‐cell configurations.
A supramolecular binder network is introduced to silicon monoxide (SiOx) anodes in Li‐ion batteries. Hydroxylated pyrene attached on the carbon surface of SiOx via π–π interaction strongly interacts with a polyrotaxane‐crosslinked poly(acrylic acid) binder via hydrogen bonding, while the ring sliding motion of the polyrotaxane imparts elasticity in the binder network. These hierarchical supramolecular interactions improve the electrode's integrity, leading to robust cyclability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31693231</pmid><doi>10.1002/adma.201905048</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8783-0901</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2019-12, Vol.31 (51), p.e1905048-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2312555358 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acrylics Crosslinking cyclodextrin Elasticity Electrodes Hydrogen bonding Interface stability Lithium-ion batteries Materials science molecular machines Polyacrylic acid polyrotaxanes pyrene Silicon swelling |
title | A Pyrene–Poly(acrylic acid)–Polyrotaxane Supramolecular Binder Network for High‐Performance Silicon Negative Electrodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pyrene%E2%80%93Poly(acrylic%20acid)%E2%80%93Polyrotaxane%20Supramolecular%20Binder%20Network%20for%20High%E2%80%90Performance%20Silicon%20Negative%20Electrodes&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Cho,%20Yunshik&rft.date=2019-12-01&rft.volume=31&rft.issue=51&rft.spage=e1905048&rft.epage=n/a&rft.pages=e1905048-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201905048&rft_dat=%3Cproquest_cross%3E2327421752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327421752&rft_id=info:pmid/31693231&rfr_iscdi=true |