Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR

Abstract Aims Conventional fractional flow reserve (FFR) is measured invasively using a coronary guidewire equipped with a pressure sensor. A non-invasive derived FFR would eliminate risk of coronary injury, minimize technical limitations, and potentially increase adoption. We aimed to evaluate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular research 2020-06, Vol.116 (7), p.1349-1356
Hauptverfasser: Li, Jianping, Gong, Yanjun, Wang, Weimin, Yang, Qing, Liu, Bin, Lu, Yuan, Xu, Yawei, Huo, Yunlong, Yi, Tieci, Liu, Jian, Li, Yongle, Xu, Shaopeng, Zhao, Lei, Ali, Ziad A, Huo, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1356
container_issue 7
container_start_page 1349
container_title Cardiovascular research
container_volume 116
creator Li, Jianping
Gong, Yanjun
Wang, Weimin
Yang, Qing
Liu, Bin
Lu, Yuan
Xu, Yawei
Huo, Yunlong
Yi, Tieci
Liu, Jian
Li, Yongle
Xu, Shaopeng
Zhao, Lei
Ali, Ziad A
Huo, Yong
description Abstract Aims Conventional fractional flow reserve (FFR) is measured invasively using a coronary guidewire equipped with a pressure sensor. A non-invasive derived FFR would eliminate risk of coronary injury, minimize technical limitations, and potentially increase adoption. We aimed to evaluate the diagnostic performance of a computational pressure-flow dynamics derived FFR (caFFR), applied to coronary angiography, compared to invasive FFR. Methods and results The FLASH FFR study was a prospective, multicentre, single-arm study conducted at six centres in China. Eligible patients had native coronary artery target lesions with visually estimated diameter stenosis of 30–90% and diagnosis of stable or unstable angina pectoris. Using computational pressure-fluid dynamics, in conjunction with thrombolysis in myocardial infarction (TIMI) frame count, applied to coronary angiography, caFFR was measured online in real-time and compared blind to conventional invasive FFR by an independent core laboratory. The primary endpoint was the agreement between caFFR and FFR, with a pre-specified performance goal of 84%. Between June and December 2018, matched caFFR and FFR measurements were performed in 328 coronary arteries. Total operational time for caFFR was 4.54 ± 1.48 min. caFFR was highly correlated to FFR (R = 0.89, P = 0.76) with a mean bias of −0.002 ± 0.049 (95% limits of agreement −0.098 to 0.093). The diagnostic performance of caFFR vs. FFR was diagnostic accuracy 95.7%, sensitivity 90.4%, specificity 98.6%, positive predictive value 97.2%, negative predictive value 95.0%, and area under the receiver operating characteristic curve of 0.979. Conclusions Using wire-based FFR as the reference, caFFR has high accuracy, sensitivity, and specificity. caFFR could eliminate the need of a pressure wire, technical error and potentially increase adoption of physiological assessment of coronary artery stenosis severity. Clinical Trial Registration URL: http://www.chictr.org.cn Unique Identifier: ChiCTR1800019522.
doi_str_mv 10.1093/cvr/cvz289
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2312554702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cvr/cvz289</oup_id><sourcerecordid>2312554702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-e1a623164f2b272f90dddd731117a68de4a2be590f7f0fcfcebd06259124ba43</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobn7c-AMkN4II1SRt2tW7MawTBoLuvqTpyYy0TU3aSb3wt5vR6aUHwuEcnjwkL0IXlNxSkoZ3cmv9-WKz9ABNacJ5ELKIH6IpIWQWxGEcTtCJc-9-5DyJjtEkpHEakpRN0fdcyt4KOWCjsDR123ei06YRFW4tONdbCFTV6xKXQyNqLR0WbVtpKHFn_AXrUTtg0Wy02VjRvg27fQlWbwErL97LVGU-sReC3cI9zlbz1yXOspczdKRE5eB830_ROntYL5bB6vnxaTFfBTKiaRcAFTHzj44UK1jCVEpKX0lIKU1EPCshEqwAnhKVKKKkklCUJGY8pSwqRBSeoutR21rz0YPr8lo7CVUlGjC9y72bcR4lhHn0ZkSlNc5ZUHlrde3_mFOS7-LOfdz5GLeHL_fevqih_EN_8_XA1QiYvv1P9ANokotO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312554702</pqid></control><display><type>article</type><title>Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Jianping ; Gong, Yanjun ; Wang, Weimin ; Yang, Qing ; Liu, Bin ; Lu, Yuan ; Xu, Yawei ; Huo, Yunlong ; Yi, Tieci ; Liu, Jian ; Li, Yongle ; Xu, Shaopeng ; Zhao, Lei ; Ali, Ziad A ; Huo, Yong</creator><creatorcontrib>Li, Jianping ; Gong, Yanjun ; Wang, Weimin ; Yang, Qing ; Liu, Bin ; Lu, Yuan ; Xu, Yawei ; Huo, Yunlong ; Yi, Tieci ; Liu, Jian ; Li, Yongle ; Xu, Shaopeng ; Zhao, Lei ; Ali, Ziad A ; Huo, Yong</creatorcontrib><description>Abstract Aims Conventional fractional flow reserve (FFR) is measured invasively using a coronary guidewire equipped with a pressure sensor. A non-invasive derived FFR would eliminate risk of coronary injury, minimize technical limitations, and potentially increase adoption. We aimed to evaluate the diagnostic performance of a computational pressure-flow dynamics derived FFR (caFFR), applied to coronary angiography, compared to invasive FFR. Methods and results The FLASH FFR study was a prospective, multicentre, single-arm study conducted at six centres in China. Eligible patients had native coronary artery target lesions with visually estimated diameter stenosis of 30–90% and diagnosis of stable or unstable angina pectoris. Using computational pressure-fluid dynamics, in conjunction with thrombolysis in myocardial infarction (TIMI) frame count, applied to coronary angiography, caFFR was measured online in real-time and compared blind to conventional invasive FFR by an independent core laboratory. The primary endpoint was the agreement between caFFR and FFR, with a pre-specified performance goal of 84%. Between June and December 2018, matched caFFR and FFR measurements were performed in 328 coronary arteries. Total operational time for caFFR was 4.54 ± 1.48 min. caFFR was highly correlated to FFR (R = 0.89, P = 0.76) with a mean bias of −0.002 ± 0.049 (95% limits of agreement −0.098 to 0.093). The diagnostic performance of caFFR vs. FFR was diagnostic accuracy 95.7%, sensitivity 90.4%, specificity 98.6%, positive predictive value 97.2%, negative predictive value 95.0%, and area under the receiver operating characteristic curve of 0.979. Conclusions Using wire-based FFR as the reference, caFFR has high accuracy, sensitivity, and specificity. caFFR could eliminate the need of a pressure wire, technical error and potentially increase adoption of physiological assessment of coronary artery stenosis severity. Clinical Trial Registration URL: http://www.chictr.org.cn Unique Identifier: ChiCTR1800019522.</description><identifier>ISSN: 0008-6363</identifier><identifier>EISSN: 1755-3245</identifier><identifier>DOI: 10.1093/cvr/cvz289</identifier><identifier>PMID: 31693092</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Aged ; Angina, Stable - diagnosis ; Angina, Stable - physiopathology ; Angina, Unstable - diagnosis ; Angina, Unstable - physiopathology ; Cardiac Catheterization ; China ; Coronary Angiography ; Coronary Stenosis - diagnostic imaging ; Coronary Stenosis - physiopathology ; Female ; Fractional Flow Reserve, Myocardial ; Humans ; Male ; Middle Aged ; Models, Cardiovascular ; Predictive Value of Tests ; Prospective Studies ; Reproducibility of Results ; Severity of Illness Index</subject><ispartof>Cardiovascular research, 2020-06, Vol.116 (7), p.1349-1356</ispartof><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2019. For permissions, please email: journals.permissions@oup.com. 2019</rights><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2019. For permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-e1a623164f2b272f90dddd731117a68de4a2be590f7f0fcfcebd06259124ba43</citedby><cites>FETCH-LOGICAL-c419t-e1a623164f2b272f90dddd731117a68de4a2be590f7f0fcfcebd06259124ba43</cites><orcidid>0000-0003-1281-1073 ; 0000-0003-4121-3224 ; 0000-0002-5407-8773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31693092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jianping</creatorcontrib><creatorcontrib>Gong, Yanjun</creatorcontrib><creatorcontrib>Wang, Weimin</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Lu, Yuan</creatorcontrib><creatorcontrib>Xu, Yawei</creatorcontrib><creatorcontrib>Huo, Yunlong</creatorcontrib><creatorcontrib>Yi, Tieci</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Li, Yongle</creatorcontrib><creatorcontrib>Xu, Shaopeng</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Ali, Ziad A</creatorcontrib><creatorcontrib>Huo, Yong</creatorcontrib><title>Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR</title><title>Cardiovascular research</title><addtitle>Cardiovasc Res</addtitle><description>Abstract Aims Conventional fractional flow reserve (FFR) is measured invasively using a coronary guidewire equipped with a pressure sensor. A non-invasive derived FFR would eliminate risk of coronary injury, minimize technical limitations, and potentially increase adoption. We aimed to evaluate the diagnostic performance of a computational pressure-flow dynamics derived FFR (caFFR), applied to coronary angiography, compared to invasive FFR. Methods and results The FLASH FFR study was a prospective, multicentre, single-arm study conducted at six centres in China. Eligible patients had native coronary artery target lesions with visually estimated diameter stenosis of 30–90% and diagnosis of stable or unstable angina pectoris. Using computational pressure-fluid dynamics, in conjunction with thrombolysis in myocardial infarction (TIMI) frame count, applied to coronary angiography, caFFR was measured online in real-time and compared blind to conventional invasive FFR by an independent core laboratory. The primary endpoint was the agreement between caFFR and FFR, with a pre-specified performance goal of 84%. Between June and December 2018, matched caFFR and FFR measurements were performed in 328 coronary arteries. Total operational time for caFFR was 4.54 ± 1.48 min. caFFR was highly correlated to FFR (R = 0.89, P = 0.76) with a mean bias of −0.002 ± 0.049 (95% limits of agreement −0.098 to 0.093). The diagnostic performance of caFFR vs. FFR was diagnostic accuracy 95.7%, sensitivity 90.4%, specificity 98.6%, positive predictive value 97.2%, negative predictive value 95.0%, and area under the receiver operating characteristic curve of 0.979. Conclusions Using wire-based FFR as the reference, caFFR has high accuracy, sensitivity, and specificity. caFFR could eliminate the need of a pressure wire, technical error and potentially increase adoption of physiological assessment of coronary artery stenosis severity. Clinical Trial Registration URL: http://www.chictr.org.cn Unique Identifier: ChiCTR1800019522.</description><subject>Aged</subject><subject>Angina, Stable - diagnosis</subject><subject>Angina, Stable - physiopathology</subject><subject>Angina, Unstable - diagnosis</subject><subject>Angina, Unstable - physiopathology</subject><subject>Cardiac Catheterization</subject><subject>China</subject><subject>Coronary Angiography</subject><subject>Coronary Stenosis - diagnostic imaging</subject><subject>Coronary Stenosis - physiopathology</subject><subject>Female</subject><subject>Fractional Flow Reserve, Myocardial</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Cardiovascular</subject><subject>Predictive Value of Tests</subject><subject>Prospective Studies</subject><subject>Reproducibility of Results</subject><subject>Severity of Illness Index</subject><issn>0008-6363</issn><issn>1755-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF1LwzAUhoMobn7c-AMkN4II1SRt2tW7MawTBoLuvqTpyYy0TU3aSb3wt5vR6aUHwuEcnjwkL0IXlNxSkoZ3cmv9-WKz9ABNacJ5ELKIH6IpIWQWxGEcTtCJc-9-5DyJjtEkpHEakpRN0fdcyt4KOWCjsDR123ei06YRFW4tONdbCFTV6xKXQyNqLR0WbVtpKHFn_AXrUTtg0Wy02VjRvg27fQlWbwErL97LVGU-sReC3cI9zlbz1yXOspczdKRE5eB830_ROntYL5bB6vnxaTFfBTKiaRcAFTHzj44UK1jCVEpKX0lIKU1EPCshEqwAnhKVKKKkklCUJGY8pSwqRBSeoutR21rz0YPr8lo7CVUlGjC9y72bcR4lhHn0ZkSlNc5ZUHlrde3_mFOS7-LOfdz5GLeHL_fevqih_EN_8_XA1QiYvv1P9ANokotO</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Li, Jianping</creator><creator>Gong, Yanjun</creator><creator>Wang, Weimin</creator><creator>Yang, Qing</creator><creator>Liu, Bin</creator><creator>Lu, Yuan</creator><creator>Xu, Yawei</creator><creator>Huo, Yunlong</creator><creator>Yi, Tieci</creator><creator>Liu, Jian</creator><creator>Li, Yongle</creator><creator>Xu, Shaopeng</creator><creator>Zhao, Lei</creator><creator>Ali, Ziad A</creator><creator>Huo, Yong</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1281-1073</orcidid><orcidid>https://orcid.org/0000-0003-4121-3224</orcidid><orcidid>https://orcid.org/0000-0002-5407-8773</orcidid></search><sort><creationdate>20200601</creationdate><title>Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR</title><author>Li, Jianping ; Gong, Yanjun ; Wang, Weimin ; Yang, Qing ; Liu, Bin ; Lu, Yuan ; Xu, Yawei ; Huo, Yunlong ; Yi, Tieci ; Liu, Jian ; Li, Yongle ; Xu, Shaopeng ; Zhao, Lei ; Ali, Ziad A ; Huo, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-e1a623164f2b272f90dddd731117a68de4a2be590f7f0fcfcebd06259124ba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Angina, Stable - diagnosis</topic><topic>Angina, Stable - physiopathology</topic><topic>Angina, Unstable - diagnosis</topic><topic>Angina, Unstable - physiopathology</topic><topic>Cardiac Catheterization</topic><topic>China</topic><topic>Coronary Angiography</topic><topic>Coronary Stenosis - diagnostic imaging</topic><topic>Coronary Stenosis - physiopathology</topic><topic>Female</topic><topic>Fractional Flow Reserve, Myocardial</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Cardiovascular</topic><topic>Predictive Value of Tests</topic><topic>Prospective Studies</topic><topic>Reproducibility of Results</topic><topic>Severity of Illness Index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jianping</creatorcontrib><creatorcontrib>Gong, Yanjun</creatorcontrib><creatorcontrib>Wang, Weimin</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Lu, Yuan</creatorcontrib><creatorcontrib>Xu, Yawei</creatorcontrib><creatorcontrib>Huo, Yunlong</creatorcontrib><creatorcontrib>Yi, Tieci</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Li, Yongle</creatorcontrib><creatorcontrib>Xu, Shaopeng</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Ali, Ziad A</creatorcontrib><creatorcontrib>Huo, Yong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cardiovascular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jianping</au><au>Gong, Yanjun</au><au>Wang, Weimin</au><au>Yang, Qing</au><au>Liu, Bin</au><au>Lu, Yuan</au><au>Xu, Yawei</au><au>Huo, Yunlong</au><au>Yi, Tieci</au><au>Liu, Jian</au><au>Li, Yongle</au><au>Xu, Shaopeng</au><au>Zhao, Lei</au><au>Ali, Ziad A</au><au>Huo, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR</atitle><jtitle>Cardiovascular research</jtitle><addtitle>Cardiovasc Res</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>116</volume><issue>7</issue><spage>1349</spage><epage>1356</epage><pages>1349-1356</pages><issn>0008-6363</issn><eissn>1755-3245</eissn><abstract>Abstract Aims Conventional fractional flow reserve (FFR) is measured invasively using a coronary guidewire equipped with a pressure sensor. A non-invasive derived FFR would eliminate risk of coronary injury, minimize technical limitations, and potentially increase adoption. We aimed to evaluate the diagnostic performance of a computational pressure-flow dynamics derived FFR (caFFR), applied to coronary angiography, compared to invasive FFR. Methods and results The FLASH FFR study was a prospective, multicentre, single-arm study conducted at six centres in China. Eligible patients had native coronary artery target lesions with visually estimated diameter stenosis of 30–90% and diagnosis of stable or unstable angina pectoris. Using computational pressure-fluid dynamics, in conjunction with thrombolysis in myocardial infarction (TIMI) frame count, applied to coronary angiography, caFFR was measured online in real-time and compared blind to conventional invasive FFR by an independent core laboratory. The primary endpoint was the agreement between caFFR and FFR, with a pre-specified performance goal of 84%. Between June and December 2018, matched caFFR and FFR measurements were performed in 328 coronary arteries. Total operational time for caFFR was 4.54 ± 1.48 min. caFFR was highly correlated to FFR (R = 0.89, P = 0.76) with a mean bias of −0.002 ± 0.049 (95% limits of agreement −0.098 to 0.093). The diagnostic performance of caFFR vs. FFR was diagnostic accuracy 95.7%, sensitivity 90.4%, specificity 98.6%, positive predictive value 97.2%, negative predictive value 95.0%, and area under the receiver operating characteristic curve of 0.979. Conclusions Using wire-based FFR as the reference, caFFR has high accuracy, sensitivity, and specificity. caFFR could eliminate the need of a pressure wire, technical error and potentially increase adoption of physiological assessment of coronary artery stenosis severity. Clinical Trial Registration URL: http://www.chictr.org.cn Unique Identifier: ChiCTR1800019522.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31693092</pmid><doi>10.1093/cvr/cvz289</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1281-1073</orcidid><orcidid>https://orcid.org/0000-0003-4121-3224</orcidid><orcidid>https://orcid.org/0000-0002-5407-8773</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6363
ispartof Cardiovascular research, 2020-06, Vol.116 (7), p.1349-1356
issn 0008-6363
1755-3245
language eng
recordid cdi_proquest_miscellaneous_2312554702
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Aged
Angina, Stable - diagnosis
Angina, Stable - physiopathology
Angina, Unstable - diagnosis
Angina, Unstable - physiopathology
Cardiac Catheterization
China
Coronary Angiography
Coronary Stenosis - diagnostic imaging
Coronary Stenosis - physiopathology
Female
Fractional Flow Reserve, Myocardial
Humans
Male
Middle Aged
Models, Cardiovascular
Predictive Value of Tests
Prospective Studies
Reproducibility of Results
Severity of Illness Index
title Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accuracy%20of%20computational%20pressure-fluid%20dynamics%20applied%20to%20coronary%20angiography%20to%20derive%20fractional%20flow%20reserve:%20FLASH%20FFR&rft.jtitle=Cardiovascular%20research&rft.au=Li,%20Jianping&rft.date=2020-06-01&rft.volume=116&rft.issue=7&rft.spage=1349&rft.epage=1356&rft.pages=1349-1356&rft.issn=0008-6363&rft.eissn=1755-3245&rft_id=info:doi/10.1093/cvr/cvz289&rft_dat=%3Cproquest_cross%3E2312554702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312554702&rft_id=info:pmid/31693092&rft_oup_id=10.1093/cvr/cvz289&rfr_iscdi=true