Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR
Abstract Aims Conventional fractional flow reserve (FFR) is measured invasively using a coronary guidewire equipped with a pressure sensor. A non-invasive derived FFR would eliminate risk of coronary injury, minimize technical limitations, and potentially increase adoption. We aimed to evaluate the...
Gespeichert in:
Veröffentlicht in: | Cardiovascular research 2020-06, Vol.116 (7), p.1349-1356 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1356 |
---|---|
container_issue | 7 |
container_start_page | 1349 |
container_title | Cardiovascular research |
container_volume | 116 |
creator | Li, Jianping Gong, Yanjun Wang, Weimin Yang, Qing Liu, Bin Lu, Yuan Xu, Yawei Huo, Yunlong Yi, Tieci Liu, Jian Li, Yongle Xu, Shaopeng Zhao, Lei Ali, Ziad A Huo, Yong |
description | Abstract
Aims
Conventional fractional flow reserve (FFR) is measured invasively using a coronary guidewire equipped with a pressure sensor. A non-invasive derived FFR would eliminate risk of coronary injury, minimize technical limitations, and potentially increase adoption. We aimed to evaluate the diagnostic performance of a computational pressure-flow dynamics derived FFR (caFFR), applied to coronary angiography, compared to invasive FFR.
Methods and results
The FLASH FFR study was a prospective, multicentre, single-arm study conducted at six centres in China. Eligible patients had native coronary artery target lesions with visually estimated diameter stenosis of 30–90% and diagnosis of stable or unstable angina pectoris. Using computational pressure-fluid dynamics, in conjunction with thrombolysis in myocardial infarction (TIMI) frame count, applied to coronary angiography, caFFR was measured online in real-time and compared blind to conventional invasive FFR by an independent core laboratory. The primary endpoint was the agreement between caFFR and FFR, with a pre-specified performance goal of 84%. Between June and December 2018, matched caFFR and FFR measurements were performed in 328 coronary arteries. Total operational time for caFFR was 4.54 ± 1.48 min. caFFR was highly correlated to FFR (R = 0.89, P = 0.76) with a mean bias of −0.002 ± 0.049 (95% limits of agreement −0.098 to 0.093). The diagnostic performance of caFFR vs. FFR was diagnostic accuracy 95.7%, sensitivity 90.4%, specificity 98.6%, positive predictive value 97.2%, negative predictive value 95.0%, and area under the receiver operating characteristic curve of 0.979.
Conclusions
Using wire-based FFR as the reference, caFFR has high accuracy, sensitivity, and specificity. caFFR could eliminate the need of a pressure wire, technical error and potentially increase adoption of physiological assessment of coronary artery stenosis severity.
Clinical Trial Registration
URL: http://www.chictr.org.cn Unique Identifier: ChiCTR1800019522. |
doi_str_mv | 10.1093/cvr/cvz289 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2312554702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cvr/cvz289</oup_id><sourcerecordid>2312554702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-e1a623164f2b272f90dddd731117a68de4a2be590f7f0fcfcebd06259124ba43</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobn7c-AMkN4II1SRt2tW7MawTBoLuvqTpyYy0TU3aSb3wt5vR6aUHwuEcnjwkL0IXlNxSkoZ3cmv9-WKz9ABNacJ5ELKIH6IpIWQWxGEcTtCJc-9-5DyJjtEkpHEakpRN0fdcyt4KOWCjsDR123ei06YRFW4tONdbCFTV6xKXQyNqLR0WbVtpKHFn_AXrUTtg0Wy02VjRvg27fQlWbwErL97LVGU-sReC3cI9zlbz1yXOspczdKRE5eB830_ROntYL5bB6vnxaTFfBTKiaRcAFTHzj44UK1jCVEpKX0lIKU1EPCshEqwAnhKVKKKkklCUJGY8pSwqRBSeoutR21rz0YPr8lo7CVUlGjC9y72bcR4lhHn0ZkSlNc5ZUHlrde3_mFOS7-LOfdz5GLeHL_fevqih_EN_8_XA1QiYvv1P9ANokotO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312554702</pqid></control><display><type>article</type><title>Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Jianping ; Gong, Yanjun ; Wang, Weimin ; Yang, Qing ; Liu, Bin ; Lu, Yuan ; Xu, Yawei ; Huo, Yunlong ; Yi, Tieci ; Liu, Jian ; Li, Yongle ; Xu, Shaopeng ; Zhao, Lei ; Ali, Ziad A ; Huo, Yong</creator><creatorcontrib>Li, Jianping ; Gong, Yanjun ; Wang, Weimin ; Yang, Qing ; Liu, Bin ; Lu, Yuan ; Xu, Yawei ; Huo, Yunlong ; Yi, Tieci ; Liu, Jian ; Li, Yongle ; Xu, Shaopeng ; Zhao, Lei ; Ali, Ziad A ; Huo, Yong</creatorcontrib><description>Abstract
Aims
Conventional fractional flow reserve (FFR) is measured invasively using a coronary guidewire equipped with a pressure sensor. A non-invasive derived FFR would eliminate risk of coronary injury, minimize technical limitations, and potentially increase adoption. We aimed to evaluate the diagnostic performance of a computational pressure-flow dynamics derived FFR (caFFR), applied to coronary angiography, compared to invasive FFR.
Methods and results
The FLASH FFR study was a prospective, multicentre, single-arm study conducted at six centres in China. Eligible patients had native coronary artery target lesions with visually estimated diameter stenosis of 30–90% and diagnosis of stable or unstable angina pectoris. Using computational pressure-fluid dynamics, in conjunction with thrombolysis in myocardial infarction (TIMI) frame count, applied to coronary angiography, caFFR was measured online in real-time and compared blind to conventional invasive FFR by an independent core laboratory. The primary endpoint was the agreement between caFFR and FFR, with a pre-specified performance goal of 84%. Between June and December 2018, matched caFFR and FFR measurements were performed in 328 coronary arteries. Total operational time for caFFR was 4.54 ± 1.48 min. caFFR was highly correlated to FFR (R = 0.89, P = 0.76) with a mean bias of −0.002 ± 0.049 (95% limits of agreement −0.098 to 0.093). The diagnostic performance of caFFR vs. FFR was diagnostic accuracy 95.7%, sensitivity 90.4%, specificity 98.6%, positive predictive value 97.2%, negative predictive value 95.0%, and area under the receiver operating characteristic curve of 0.979.
Conclusions
Using wire-based FFR as the reference, caFFR has high accuracy, sensitivity, and specificity. caFFR could eliminate the need of a pressure wire, technical error and potentially increase adoption of physiological assessment of coronary artery stenosis severity.
Clinical Trial Registration
URL: http://www.chictr.org.cn Unique Identifier: ChiCTR1800019522.</description><identifier>ISSN: 0008-6363</identifier><identifier>EISSN: 1755-3245</identifier><identifier>DOI: 10.1093/cvr/cvz289</identifier><identifier>PMID: 31693092</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Aged ; Angina, Stable - diagnosis ; Angina, Stable - physiopathology ; Angina, Unstable - diagnosis ; Angina, Unstable - physiopathology ; Cardiac Catheterization ; China ; Coronary Angiography ; Coronary Stenosis - diagnostic imaging ; Coronary Stenosis - physiopathology ; Female ; Fractional Flow Reserve, Myocardial ; Humans ; Male ; Middle Aged ; Models, Cardiovascular ; Predictive Value of Tests ; Prospective Studies ; Reproducibility of Results ; Severity of Illness Index</subject><ispartof>Cardiovascular research, 2020-06, Vol.116 (7), p.1349-1356</ispartof><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2019. For permissions, please email: journals.permissions@oup.com. 2019</rights><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2019. For permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-e1a623164f2b272f90dddd731117a68de4a2be590f7f0fcfcebd06259124ba43</citedby><cites>FETCH-LOGICAL-c419t-e1a623164f2b272f90dddd731117a68de4a2be590f7f0fcfcebd06259124ba43</cites><orcidid>0000-0003-1281-1073 ; 0000-0003-4121-3224 ; 0000-0002-5407-8773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31693092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jianping</creatorcontrib><creatorcontrib>Gong, Yanjun</creatorcontrib><creatorcontrib>Wang, Weimin</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Lu, Yuan</creatorcontrib><creatorcontrib>Xu, Yawei</creatorcontrib><creatorcontrib>Huo, Yunlong</creatorcontrib><creatorcontrib>Yi, Tieci</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Li, Yongle</creatorcontrib><creatorcontrib>Xu, Shaopeng</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Ali, Ziad A</creatorcontrib><creatorcontrib>Huo, Yong</creatorcontrib><title>Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR</title><title>Cardiovascular research</title><addtitle>Cardiovasc Res</addtitle><description>Abstract
Aims
Conventional fractional flow reserve (FFR) is measured invasively using a coronary guidewire equipped with a pressure sensor. A non-invasive derived FFR would eliminate risk of coronary injury, minimize technical limitations, and potentially increase adoption. We aimed to evaluate the diagnostic performance of a computational pressure-flow dynamics derived FFR (caFFR), applied to coronary angiography, compared to invasive FFR.
Methods and results
The FLASH FFR study was a prospective, multicentre, single-arm study conducted at six centres in China. Eligible patients had native coronary artery target lesions with visually estimated diameter stenosis of 30–90% and diagnosis of stable or unstable angina pectoris. Using computational pressure-fluid dynamics, in conjunction with thrombolysis in myocardial infarction (TIMI) frame count, applied to coronary angiography, caFFR was measured online in real-time and compared blind to conventional invasive FFR by an independent core laboratory. The primary endpoint was the agreement between caFFR and FFR, with a pre-specified performance goal of 84%. Between June and December 2018, matched caFFR and FFR measurements were performed in 328 coronary arteries. Total operational time for caFFR was 4.54 ± 1.48 min. caFFR was highly correlated to FFR (R = 0.89, P = 0.76) with a mean bias of −0.002 ± 0.049 (95% limits of agreement −0.098 to 0.093). The diagnostic performance of caFFR vs. FFR was diagnostic accuracy 95.7%, sensitivity 90.4%, specificity 98.6%, positive predictive value 97.2%, negative predictive value 95.0%, and area under the receiver operating characteristic curve of 0.979.
Conclusions
Using wire-based FFR as the reference, caFFR has high accuracy, sensitivity, and specificity. caFFR could eliminate the need of a pressure wire, technical error and potentially increase adoption of physiological assessment of coronary artery stenosis severity.
Clinical Trial Registration
URL: http://www.chictr.org.cn Unique Identifier: ChiCTR1800019522.</description><subject>Aged</subject><subject>Angina, Stable - diagnosis</subject><subject>Angina, Stable - physiopathology</subject><subject>Angina, Unstable - diagnosis</subject><subject>Angina, Unstable - physiopathology</subject><subject>Cardiac Catheterization</subject><subject>China</subject><subject>Coronary Angiography</subject><subject>Coronary Stenosis - diagnostic imaging</subject><subject>Coronary Stenosis - physiopathology</subject><subject>Female</subject><subject>Fractional Flow Reserve, Myocardial</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Cardiovascular</subject><subject>Predictive Value of Tests</subject><subject>Prospective Studies</subject><subject>Reproducibility of Results</subject><subject>Severity of Illness Index</subject><issn>0008-6363</issn><issn>1755-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF1LwzAUhoMobn7c-AMkN4II1SRt2tW7MawTBoLuvqTpyYy0TU3aSb3wt5vR6aUHwuEcnjwkL0IXlNxSkoZ3cmv9-WKz9ABNacJ5ELKIH6IpIWQWxGEcTtCJc-9-5DyJjtEkpHEakpRN0fdcyt4KOWCjsDR123ei06YRFW4tONdbCFTV6xKXQyNqLR0WbVtpKHFn_AXrUTtg0Wy02VjRvg27fQlWbwErL97LVGU-sReC3cI9zlbz1yXOspczdKRE5eB830_ROntYL5bB6vnxaTFfBTKiaRcAFTHzj44UK1jCVEpKX0lIKU1EPCshEqwAnhKVKKKkklCUJGY8pSwqRBSeoutR21rz0YPr8lo7CVUlGjC9y72bcR4lhHn0ZkSlNc5ZUHlrde3_mFOS7-LOfdz5GLeHL_fevqih_EN_8_XA1QiYvv1P9ANokotO</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Li, Jianping</creator><creator>Gong, Yanjun</creator><creator>Wang, Weimin</creator><creator>Yang, Qing</creator><creator>Liu, Bin</creator><creator>Lu, Yuan</creator><creator>Xu, Yawei</creator><creator>Huo, Yunlong</creator><creator>Yi, Tieci</creator><creator>Liu, Jian</creator><creator>Li, Yongle</creator><creator>Xu, Shaopeng</creator><creator>Zhao, Lei</creator><creator>Ali, Ziad A</creator><creator>Huo, Yong</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1281-1073</orcidid><orcidid>https://orcid.org/0000-0003-4121-3224</orcidid><orcidid>https://orcid.org/0000-0002-5407-8773</orcidid></search><sort><creationdate>20200601</creationdate><title>Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR</title><author>Li, Jianping ; Gong, Yanjun ; Wang, Weimin ; Yang, Qing ; Liu, Bin ; Lu, Yuan ; Xu, Yawei ; Huo, Yunlong ; Yi, Tieci ; Liu, Jian ; Li, Yongle ; Xu, Shaopeng ; Zhao, Lei ; Ali, Ziad A ; Huo, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-e1a623164f2b272f90dddd731117a68de4a2be590f7f0fcfcebd06259124ba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Angina, Stable - diagnosis</topic><topic>Angina, Stable - physiopathology</topic><topic>Angina, Unstable - diagnosis</topic><topic>Angina, Unstable - physiopathology</topic><topic>Cardiac Catheterization</topic><topic>China</topic><topic>Coronary Angiography</topic><topic>Coronary Stenosis - diagnostic imaging</topic><topic>Coronary Stenosis - physiopathology</topic><topic>Female</topic><topic>Fractional Flow Reserve, Myocardial</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Cardiovascular</topic><topic>Predictive Value of Tests</topic><topic>Prospective Studies</topic><topic>Reproducibility of Results</topic><topic>Severity of Illness Index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jianping</creatorcontrib><creatorcontrib>Gong, Yanjun</creatorcontrib><creatorcontrib>Wang, Weimin</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Lu, Yuan</creatorcontrib><creatorcontrib>Xu, Yawei</creatorcontrib><creatorcontrib>Huo, Yunlong</creatorcontrib><creatorcontrib>Yi, Tieci</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Li, Yongle</creatorcontrib><creatorcontrib>Xu, Shaopeng</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Ali, Ziad A</creatorcontrib><creatorcontrib>Huo, Yong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cardiovascular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jianping</au><au>Gong, Yanjun</au><au>Wang, Weimin</au><au>Yang, Qing</au><au>Liu, Bin</au><au>Lu, Yuan</au><au>Xu, Yawei</au><au>Huo, Yunlong</au><au>Yi, Tieci</au><au>Liu, Jian</au><au>Li, Yongle</au><au>Xu, Shaopeng</au><au>Zhao, Lei</au><au>Ali, Ziad A</au><au>Huo, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR</atitle><jtitle>Cardiovascular research</jtitle><addtitle>Cardiovasc Res</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>116</volume><issue>7</issue><spage>1349</spage><epage>1356</epage><pages>1349-1356</pages><issn>0008-6363</issn><eissn>1755-3245</eissn><abstract>Abstract
Aims
Conventional fractional flow reserve (FFR) is measured invasively using a coronary guidewire equipped with a pressure sensor. A non-invasive derived FFR would eliminate risk of coronary injury, minimize technical limitations, and potentially increase adoption. We aimed to evaluate the diagnostic performance of a computational pressure-flow dynamics derived FFR (caFFR), applied to coronary angiography, compared to invasive FFR.
Methods and results
The FLASH FFR study was a prospective, multicentre, single-arm study conducted at six centres in China. Eligible patients had native coronary artery target lesions with visually estimated diameter stenosis of 30–90% and diagnosis of stable or unstable angina pectoris. Using computational pressure-fluid dynamics, in conjunction with thrombolysis in myocardial infarction (TIMI) frame count, applied to coronary angiography, caFFR was measured online in real-time and compared blind to conventional invasive FFR by an independent core laboratory. The primary endpoint was the agreement between caFFR and FFR, with a pre-specified performance goal of 84%. Between June and December 2018, matched caFFR and FFR measurements were performed in 328 coronary arteries. Total operational time for caFFR was 4.54 ± 1.48 min. caFFR was highly correlated to FFR (R = 0.89, P = 0.76) with a mean bias of −0.002 ± 0.049 (95% limits of agreement −0.098 to 0.093). The diagnostic performance of caFFR vs. FFR was diagnostic accuracy 95.7%, sensitivity 90.4%, specificity 98.6%, positive predictive value 97.2%, negative predictive value 95.0%, and area under the receiver operating characteristic curve of 0.979.
Conclusions
Using wire-based FFR as the reference, caFFR has high accuracy, sensitivity, and specificity. caFFR could eliminate the need of a pressure wire, technical error and potentially increase adoption of physiological assessment of coronary artery stenosis severity.
Clinical Trial Registration
URL: http://www.chictr.org.cn Unique Identifier: ChiCTR1800019522.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31693092</pmid><doi>10.1093/cvr/cvz289</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1281-1073</orcidid><orcidid>https://orcid.org/0000-0003-4121-3224</orcidid><orcidid>https://orcid.org/0000-0002-5407-8773</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6363 |
ispartof | Cardiovascular research, 2020-06, Vol.116 (7), p.1349-1356 |
issn | 0008-6363 1755-3245 |
language | eng |
recordid | cdi_proquest_miscellaneous_2312554702 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Aged Angina, Stable - diagnosis Angina, Stable - physiopathology Angina, Unstable - diagnosis Angina, Unstable - physiopathology Cardiac Catheterization China Coronary Angiography Coronary Stenosis - diagnostic imaging Coronary Stenosis - physiopathology Female Fractional Flow Reserve, Myocardial Humans Male Middle Aged Models, Cardiovascular Predictive Value of Tests Prospective Studies Reproducibility of Results Severity of Illness Index |
title | Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accuracy%20of%20computational%20pressure-fluid%20dynamics%20applied%20to%20coronary%20angiography%20to%20derive%20fractional%20flow%20reserve:%20FLASH%20FFR&rft.jtitle=Cardiovascular%20research&rft.au=Li,%20Jianping&rft.date=2020-06-01&rft.volume=116&rft.issue=7&rft.spage=1349&rft.epage=1356&rft.pages=1349-1356&rft.issn=0008-6363&rft.eissn=1755-3245&rft_id=info:doi/10.1093/cvr/cvz289&rft_dat=%3Cproquest_cross%3E2312554702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312554702&rft_id=info:pmid/31693092&rft_oup_id=10.1093/cvr/cvz289&rfr_iscdi=true |