Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: Towards the pharmaceutical development
[Display omitted] Brain delivery of drugs by nanoparticles is a promising strategy that could open up new possibilities for the chemotherapy of brain tumors. As demonstrated in previous studies, the loading of doxorubicin in poly(lactide-co-glycolide) nanoparticles coated with poloxamer 188 (Dox-PLG...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2019-12, Vol.572, p.118733-118733, Article 118733 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118733 |
---|---|
container_issue | |
container_start_page | 118733 |
container_title | International journal of pharmaceutics |
container_volume | 572 |
creator | Maksimenko, Olga Malinovskaya, Julia Shipulo, Elena Osipova, Nadezhda Razzhivina, Victoria Arantseva, Diana Yarovaya, Oksana Mostovaya, Ulyana Khalansky, Alexander Fedoseeva, Vera Alekseeva, Anna Vanchugova, Ludmila Gorshkova, Marina Kovalenko, Elena Balabanyan, Vadim Melnikov, Pavel Baklaushev, Vladimir Chekhonin, Vladimir Kreuter, Jörg Gelperina, Svetlana |
description | [Display omitted]
Brain delivery of drugs by nanoparticles is a promising strategy that could open up new possibilities for the chemotherapy of brain tumors. As demonstrated in previous studies, the loading of doxorubicin in poly(lactide-co-glycolide) nanoparticles coated with poloxamer 188 (Dox-PLGA) enabled the brain delivery of this cytostatic that normally cannot penetrate across the blood-brain barrier in free form. The Dox-PLGA nanoparticles produced a very considerable anti-tumor effect against the intracranial 101.8 glioblastoma in rats, thus representing a promising candidate for the chemotherapy of brain tumors that warrants clinical evaluation. The objective of the present study, therefore, was the optimization of the Dox-PLGA formulation and the development of a pilot scale manufacturing process. Optimization of the preparation procedure involved the alteration of the technological parameters such as replacement of the particle stabilizer PVA 30–70 kDa with a presumably safer low molecular mass PVA 9–10 kDa as well as the modification of the external emulsion medium and the homogenization conditions. The optimized procedure enabled an increase of the encapsulation efficiency from 66% to >90% and reduction of the nanoparticle size from 250 nm to 110 nm thus enabling the sterilization by membrane filtration. The pilot scale process was characterized by an excellent reproducibility with very low inter-batch variations. The in vitro hematotoxicity of the nanoparticles was negligible at therapeutically relevant concentrations. The anti-tumor efficacy of the optimized formulation and the ability of the nanoparticles to penetrate into the intracranial tumor and normal brain tissue were confirmed by in vivo experiments. |
doi_str_mv | 10.1016/j.ijpharm.2019.118733 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2312553445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517319307781</els_id><sourcerecordid>2312553445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-cd7b6bd09c6eeca178b3ffa2c6d13697fd668c450dfddf6b7e16396dba59cfc03</originalsourceid><addsrcrecordid>eNqFkDlv3DAQRokgRrx28hMSsEyjNSlKlJQmMJz4ABawi01NUMNhlgtKVEjJx7-39ohbVzPF--Z4hHzlbMkZlxfbpdsOGx27Zc54s-S8roT4QBa7momikh_JgomqzkpeiVNyltKWMSZzLj6RU8Fl3RQ1X5D4KzyHOLUOXJ_5oA0a-rC6uaS97sOg4-jAY6I2RDpukMIGuzA3UQ8vNFj617vQep3G0OkfdB2edDRpT-5v04DTPEF7avARfRg67MfP5MRqn_DLsZ6TP9e_11e32er-5u7qcpWBkOWYgala2RrWgEQEzau6FdbqHKThQjaVNVLWUJTMWGOsbCvkUjTStLpswAIT5-T7Ye4Qw78J06g6lwC91z2GKalc8LwsRVGUM1oeUIghpYhWDdF1Or4oztROt9qqo261060Ouufct-OKqe3QvKX--52BnwcA50cfHUaVwGEPaFxEGJUJ7p0Vr4Zyl0s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312553445</pqid></control><display><type>article</type><title>Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: Towards the pharmaceutical development</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Maksimenko, Olga ; Malinovskaya, Julia ; Shipulo, Elena ; Osipova, Nadezhda ; Razzhivina, Victoria ; Arantseva, Diana ; Yarovaya, Oksana ; Mostovaya, Ulyana ; Khalansky, Alexander ; Fedoseeva, Vera ; Alekseeva, Anna ; Vanchugova, Ludmila ; Gorshkova, Marina ; Kovalenko, Elena ; Balabanyan, Vadim ; Melnikov, Pavel ; Baklaushev, Vladimir ; Chekhonin, Vladimir ; Kreuter, Jörg ; Gelperina, Svetlana</creator><creatorcontrib>Maksimenko, Olga ; Malinovskaya, Julia ; Shipulo, Elena ; Osipova, Nadezhda ; Razzhivina, Victoria ; Arantseva, Diana ; Yarovaya, Oksana ; Mostovaya, Ulyana ; Khalansky, Alexander ; Fedoseeva, Vera ; Alekseeva, Anna ; Vanchugova, Ludmila ; Gorshkova, Marina ; Kovalenko, Elena ; Balabanyan, Vadim ; Melnikov, Pavel ; Baklaushev, Vladimir ; Chekhonin, Vladimir ; Kreuter, Jörg ; Gelperina, Svetlana</creatorcontrib><description>[Display omitted]
Brain delivery of drugs by nanoparticles is a promising strategy that could open up new possibilities for the chemotherapy of brain tumors. As demonstrated in previous studies, the loading of doxorubicin in poly(lactide-co-glycolide) nanoparticles coated with poloxamer 188 (Dox-PLGA) enabled the brain delivery of this cytostatic that normally cannot penetrate across the blood-brain barrier in free form. The Dox-PLGA nanoparticles produced a very considerable anti-tumor effect against the intracranial 101.8 glioblastoma in rats, thus representing a promising candidate for the chemotherapy of brain tumors that warrants clinical evaluation. The objective of the present study, therefore, was the optimization of the Dox-PLGA formulation and the development of a pilot scale manufacturing process. Optimization of the preparation procedure involved the alteration of the technological parameters such as replacement of the particle stabilizer PVA 30–70 kDa with a presumably safer low molecular mass PVA 9–10 kDa as well as the modification of the external emulsion medium and the homogenization conditions. The optimized procedure enabled an increase of the encapsulation efficiency from 66% to >90% and reduction of the nanoparticle size from 250 nm to 110 nm thus enabling the sterilization by membrane filtration. The pilot scale process was characterized by an excellent reproducibility with very low inter-batch variations. The in vitro hematotoxicity of the nanoparticles was negligible at therapeutically relevant concentrations. The anti-tumor efficacy of the optimized formulation and the ability of the nanoparticles to penetrate into the intracranial tumor and normal brain tissue were confirmed by in vivo experiments.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2019.118733</identifier><identifier>PMID: 31689481</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Antibiotics, Antineoplastic - administration & dosage ; Antibiotics, Antineoplastic - chemistry ; Antibiotics, Antineoplastic - radiation effects ; Brain Neoplasms - drug therapy ; Doxorubicin ; Doxorubicin - administration & dosage ; Doxorubicin - chemistry ; Doxorubicin - radiation effects ; Drug Development ; Drug Stability ; Glioblastoma ; Glioblastoma - drug therapy ; Hemocompatibility ; Irradiation ; Male ; Nanoparticles - administration & dosage ; Nanoparticles - chemistry ; Nanoparticles - radiation effects ; PLGA nanoparticles ; Polylactic Acid-Polyglycolic Acid Copolymer - administration & dosage ; Polylactic Acid-Polyglycolic Acid Copolymer - chemistry ; Polylactic Acid-Polyglycolic Acid Copolymer - radiation effects ; Rats, Wistar ; Scaling up ; Sterilization</subject><ispartof>International journal of pharmaceutics, 2019-12, Vol.572, p.118733-118733, Article 118733</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-cd7b6bd09c6eeca178b3ffa2c6d13697fd668c450dfddf6b7e16396dba59cfc03</citedby><cites>FETCH-LOGICAL-c365t-cd7b6bd09c6eeca178b3ffa2c6d13697fd668c450dfddf6b7e16396dba59cfc03</cites><orcidid>0000-0003-1113-6715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378517319307781$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31689481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maksimenko, Olga</creatorcontrib><creatorcontrib>Malinovskaya, Julia</creatorcontrib><creatorcontrib>Shipulo, Elena</creatorcontrib><creatorcontrib>Osipova, Nadezhda</creatorcontrib><creatorcontrib>Razzhivina, Victoria</creatorcontrib><creatorcontrib>Arantseva, Diana</creatorcontrib><creatorcontrib>Yarovaya, Oksana</creatorcontrib><creatorcontrib>Mostovaya, Ulyana</creatorcontrib><creatorcontrib>Khalansky, Alexander</creatorcontrib><creatorcontrib>Fedoseeva, Vera</creatorcontrib><creatorcontrib>Alekseeva, Anna</creatorcontrib><creatorcontrib>Vanchugova, Ludmila</creatorcontrib><creatorcontrib>Gorshkova, Marina</creatorcontrib><creatorcontrib>Kovalenko, Elena</creatorcontrib><creatorcontrib>Balabanyan, Vadim</creatorcontrib><creatorcontrib>Melnikov, Pavel</creatorcontrib><creatorcontrib>Baklaushev, Vladimir</creatorcontrib><creatorcontrib>Chekhonin, Vladimir</creatorcontrib><creatorcontrib>Kreuter, Jörg</creatorcontrib><creatorcontrib>Gelperina, Svetlana</creatorcontrib><title>Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: Towards the pharmaceutical development</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>[Display omitted]
Brain delivery of drugs by nanoparticles is a promising strategy that could open up new possibilities for the chemotherapy of brain tumors. As demonstrated in previous studies, the loading of doxorubicin in poly(lactide-co-glycolide) nanoparticles coated with poloxamer 188 (Dox-PLGA) enabled the brain delivery of this cytostatic that normally cannot penetrate across the blood-brain barrier in free form. The Dox-PLGA nanoparticles produced a very considerable anti-tumor effect against the intracranial 101.8 glioblastoma in rats, thus representing a promising candidate for the chemotherapy of brain tumors that warrants clinical evaluation. The objective of the present study, therefore, was the optimization of the Dox-PLGA formulation and the development of a pilot scale manufacturing process. Optimization of the preparation procedure involved the alteration of the technological parameters such as replacement of the particle stabilizer PVA 30–70 kDa with a presumably safer low molecular mass PVA 9–10 kDa as well as the modification of the external emulsion medium and the homogenization conditions. The optimized procedure enabled an increase of the encapsulation efficiency from 66% to >90% and reduction of the nanoparticle size from 250 nm to 110 nm thus enabling the sterilization by membrane filtration. The pilot scale process was characterized by an excellent reproducibility with very low inter-batch variations. The in vitro hematotoxicity of the nanoparticles was negligible at therapeutically relevant concentrations. The anti-tumor efficacy of the optimized formulation and the ability of the nanoparticles to penetrate into the intracranial tumor and normal brain tissue were confirmed by in vivo experiments.</description><subject>Animals</subject><subject>Antibiotics, Antineoplastic - administration & dosage</subject><subject>Antibiotics, Antineoplastic - chemistry</subject><subject>Antibiotics, Antineoplastic - radiation effects</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Doxorubicin</subject><subject>Doxorubicin - administration & dosage</subject><subject>Doxorubicin - chemistry</subject><subject>Doxorubicin - radiation effects</subject><subject>Drug Development</subject><subject>Drug Stability</subject><subject>Glioblastoma</subject><subject>Glioblastoma - drug therapy</subject><subject>Hemocompatibility</subject><subject>Irradiation</subject><subject>Male</subject><subject>Nanoparticles - administration & dosage</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - radiation effects</subject><subject>PLGA nanoparticles</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer - administration & dosage</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer - radiation effects</subject><subject>Rats, Wistar</subject><subject>Scaling up</subject><subject>Sterilization</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDlv3DAQRokgRrx28hMSsEyjNSlKlJQmMJz4ABawi01NUMNhlgtKVEjJx7-39ohbVzPF--Z4hHzlbMkZlxfbpdsOGx27Zc54s-S8roT4QBa7momikh_JgomqzkpeiVNyltKWMSZzLj6RU8Fl3RQ1X5D4KzyHOLUOXJ_5oA0a-rC6uaS97sOg4-jAY6I2RDpukMIGuzA3UQ8vNFj617vQep3G0OkfdB2edDRpT-5v04DTPEF7avARfRg67MfP5MRqn_DLsZ6TP9e_11e32er-5u7qcpWBkOWYgala2RrWgEQEzau6FdbqHKThQjaVNVLWUJTMWGOsbCvkUjTStLpswAIT5-T7Ye4Qw78J06g6lwC91z2GKalc8LwsRVGUM1oeUIghpYhWDdF1Or4oztROt9qqo261060Ouufct-OKqe3QvKX--52BnwcA50cfHUaVwGEPaFxEGJUJ7p0Vr4Zyl0s</recordid><startdate>20191215</startdate><enddate>20191215</enddate><creator>Maksimenko, Olga</creator><creator>Malinovskaya, Julia</creator><creator>Shipulo, Elena</creator><creator>Osipova, Nadezhda</creator><creator>Razzhivina, Victoria</creator><creator>Arantseva, Diana</creator><creator>Yarovaya, Oksana</creator><creator>Mostovaya, Ulyana</creator><creator>Khalansky, Alexander</creator><creator>Fedoseeva, Vera</creator><creator>Alekseeva, Anna</creator><creator>Vanchugova, Ludmila</creator><creator>Gorshkova, Marina</creator><creator>Kovalenko, Elena</creator><creator>Balabanyan, Vadim</creator><creator>Melnikov, Pavel</creator><creator>Baklaushev, Vladimir</creator><creator>Chekhonin, Vladimir</creator><creator>Kreuter, Jörg</creator><creator>Gelperina, Svetlana</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1113-6715</orcidid></search><sort><creationdate>20191215</creationdate><title>Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: Towards the pharmaceutical development</title><author>Maksimenko, Olga ; Malinovskaya, Julia ; Shipulo, Elena ; Osipova, Nadezhda ; Razzhivina, Victoria ; Arantseva, Diana ; Yarovaya, Oksana ; Mostovaya, Ulyana ; Khalansky, Alexander ; Fedoseeva, Vera ; Alekseeva, Anna ; Vanchugova, Ludmila ; Gorshkova, Marina ; Kovalenko, Elena ; Balabanyan, Vadim ; Melnikov, Pavel ; Baklaushev, Vladimir ; Chekhonin, Vladimir ; Kreuter, Jörg ; Gelperina, Svetlana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-cd7b6bd09c6eeca178b3ffa2c6d13697fd668c450dfddf6b7e16396dba59cfc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Antibiotics, Antineoplastic - administration & dosage</topic><topic>Antibiotics, Antineoplastic - chemistry</topic><topic>Antibiotics, Antineoplastic - radiation effects</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Doxorubicin</topic><topic>Doxorubicin - administration & dosage</topic><topic>Doxorubicin - chemistry</topic><topic>Doxorubicin - radiation effects</topic><topic>Drug Development</topic><topic>Drug Stability</topic><topic>Glioblastoma</topic><topic>Glioblastoma - drug therapy</topic><topic>Hemocompatibility</topic><topic>Irradiation</topic><topic>Male</topic><topic>Nanoparticles - administration & dosage</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - radiation effects</topic><topic>PLGA nanoparticles</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer - administration & dosage</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer - radiation effects</topic><topic>Rats, Wistar</topic><topic>Scaling up</topic><topic>Sterilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maksimenko, Olga</creatorcontrib><creatorcontrib>Malinovskaya, Julia</creatorcontrib><creatorcontrib>Shipulo, Elena</creatorcontrib><creatorcontrib>Osipova, Nadezhda</creatorcontrib><creatorcontrib>Razzhivina, Victoria</creatorcontrib><creatorcontrib>Arantseva, Diana</creatorcontrib><creatorcontrib>Yarovaya, Oksana</creatorcontrib><creatorcontrib>Mostovaya, Ulyana</creatorcontrib><creatorcontrib>Khalansky, Alexander</creatorcontrib><creatorcontrib>Fedoseeva, Vera</creatorcontrib><creatorcontrib>Alekseeva, Anna</creatorcontrib><creatorcontrib>Vanchugova, Ludmila</creatorcontrib><creatorcontrib>Gorshkova, Marina</creatorcontrib><creatorcontrib>Kovalenko, Elena</creatorcontrib><creatorcontrib>Balabanyan, Vadim</creatorcontrib><creatorcontrib>Melnikov, Pavel</creatorcontrib><creatorcontrib>Baklaushev, Vladimir</creatorcontrib><creatorcontrib>Chekhonin, Vladimir</creatorcontrib><creatorcontrib>Kreuter, Jörg</creatorcontrib><creatorcontrib>Gelperina, Svetlana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maksimenko, Olga</au><au>Malinovskaya, Julia</au><au>Shipulo, Elena</au><au>Osipova, Nadezhda</au><au>Razzhivina, Victoria</au><au>Arantseva, Diana</au><au>Yarovaya, Oksana</au><au>Mostovaya, Ulyana</au><au>Khalansky, Alexander</au><au>Fedoseeva, Vera</au><au>Alekseeva, Anna</au><au>Vanchugova, Ludmila</au><au>Gorshkova, Marina</au><au>Kovalenko, Elena</au><au>Balabanyan, Vadim</au><au>Melnikov, Pavel</au><au>Baklaushev, Vladimir</au><au>Chekhonin, Vladimir</au><au>Kreuter, Jörg</au><au>Gelperina, Svetlana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: Towards the pharmaceutical development</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2019-12-15</date><risdate>2019</risdate><volume>572</volume><spage>118733</spage><epage>118733</epage><pages>118733-118733</pages><artnum>118733</artnum><issn>0378-5173</issn><eissn>1873-3476</eissn><abstract>[Display omitted]
Brain delivery of drugs by nanoparticles is a promising strategy that could open up new possibilities for the chemotherapy of brain tumors. As demonstrated in previous studies, the loading of doxorubicin in poly(lactide-co-glycolide) nanoparticles coated with poloxamer 188 (Dox-PLGA) enabled the brain delivery of this cytostatic that normally cannot penetrate across the blood-brain barrier in free form. The Dox-PLGA nanoparticles produced a very considerable anti-tumor effect against the intracranial 101.8 glioblastoma in rats, thus representing a promising candidate for the chemotherapy of brain tumors that warrants clinical evaluation. The objective of the present study, therefore, was the optimization of the Dox-PLGA formulation and the development of a pilot scale manufacturing process. Optimization of the preparation procedure involved the alteration of the technological parameters such as replacement of the particle stabilizer PVA 30–70 kDa with a presumably safer low molecular mass PVA 9–10 kDa as well as the modification of the external emulsion medium and the homogenization conditions. The optimized procedure enabled an increase of the encapsulation efficiency from 66% to >90% and reduction of the nanoparticle size from 250 nm to 110 nm thus enabling the sterilization by membrane filtration. The pilot scale process was characterized by an excellent reproducibility with very low inter-batch variations. The in vitro hematotoxicity of the nanoparticles was negligible at therapeutically relevant concentrations. The anti-tumor efficacy of the optimized formulation and the ability of the nanoparticles to penetrate into the intracranial tumor and normal brain tissue were confirmed by in vivo experiments.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31689481</pmid><doi>10.1016/j.ijpharm.2019.118733</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1113-6715</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-5173 |
ispartof | International journal of pharmaceutics, 2019-12, Vol.572, p.118733-118733, Article 118733 |
issn | 0378-5173 1873-3476 |
language | eng |
recordid | cdi_proquest_miscellaneous_2312553445 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Antibiotics, Antineoplastic - administration & dosage Antibiotics, Antineoplastic - chemistry Antibiotics, Antineoplastic - radiation effects Brain Neoplasms - drug therapy Doxorubicin Doxorubicin - administration & dosage Doxorubicin - chemistry Doxorubicin - radiation effects Drug Development Drug Stability Glioblastoma Glioblastoma - drug therapy Hemocompatibility Irradiation Male Nanoparticles - administration & dosage Nanoparticles - chemistry Nanoparticles - radiation effects PLGA nanoparticles Polylactic Acid-Polyglycolic Acid Copolymer - administration & dosage Polylactic Acid-Polyglycolic Acid Copolymer - chemistry Polylactic Acid-Polyglycolic Acid Copolymer - radiation effects Rats, Wistar Scaling up Sterilization |
title | Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: Towards the pharmaceutical development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doxorubicin-loaded%20PLGA%20nanoparticles%20for%20the%20chemotherapy%20of%20glioblastoma:%20Towards%20the%20pharmaceutical%20development&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Maksimenko,%20Olga&rft.date=2019-12-15&rft.volume=572&rft.spage=118733&rft.epage=118733&rft.pages=118733-118733&rft.artnum=118733&rft.issn=0378-5173&rft.eissn=1873-3476&rft_id=info:doi/10.1016/j.ijpharm.2019.118733&rft_dat=%3Cproquest_cross%3E2312553445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312553445&rft_id=info:pmid/31689481&rft_els_id=S0378517319307781&rfr_iscdi=true |