Effects of two types of energy restriction on methylation levels of adiponectin receptor 1 and leptin receptor overlapping transcript in a mouse mammary tumour virus-transforming growth factor-α breast cancer mouse model
The role of adiponectin and leptin signalling pathways has been suggested to play important roles in the protective effects of energy restriction (ER) on mammary tumour (MT) development. To study the effects of ER on the methylation levels in adiponectin receptor 1 (AdipoR1) and leptin receptor over...
Gespeichert in:
Veröffentlicht in: | British journal of nutrition 2021-01, Vol.125 (1), p.1-9 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | British journal of nutrition |
container_volume | 125 |
creator | Cicekdal, M. B. Kazan, B. T. Tuna, B. G. Ozorhan, U. Ekici, I. D. Zhu, F. Suakar, O. Kuskucu, A. Bayrak, O. F. Arcaro, K. Cleary, M. P. Dogan, S. Atasayan, O. Yilmaz, B. |
description | The role of adiponectin and leptin signalling pathways has been suggested to play important roles in the protective effects of energy restriction (ER) on mammary tumour (MT) development. To study the effects of ER on the methylation levels in adiponectin receptor 1 (AdipoR1) and leptin receptor overlapping transcript (Leprot) genes using the pyrosequencing method in mammary fat pad tissue, mouse mammary tumour virus-transforming growth factor-α (MMTV-TGF-α) female mice were randomly assigned to ad libitum (AL), chronic ER (CER, 15 % ER) or intermittent ER (3 weeks AL and 1 week 60 % ER in cyclic periods) groups at 10 weeks of age until 82 weeks of age. The methylation levels of AdipoR1 in the CER group were higher than those in the AL group at week 49/50 (P < 0·05), while the levels of methylation for AdipoR1 and Leprot genes were similar among the other groups. Also, the methylation levels at CpG2 and CpG3 regions of the promoter region of the AdipoR1 gene in the CER group were three times higher (P < 0·05), while CpG1 island of Leprot methylation was significantly lower compared with the other groups (P < 0·05). Adiponectin and leptin gene expression levels were consistent with the methylation levels. We also observed a change with ageing in methylation levels of these genes. These results indicate that different types of ER modify methylation levels of AdipoR1 and Leprot in different ways and CER had a more significant effect on methylation levels of both genes. Epigenetic regulation of these genes may play important roles in the preventive effects of ER against MT development and ageing processes. |
doi_str_mv | 10.1017/S0007114519002757 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2312282716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0007114519002757</cupid><sourcerecordid>2312282716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-784c43bb658ea71af30bd1a4ad20accb5d790e0eaf35e9832736a8111e60d9773</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EokPhAdggS2y6CfgniZMlqsqPVIkFsI5unJupq8Q2tjPVPFZfhDfou-BMpyBASJas4_ud42tfQl5y9oYzrt5-YYwpzsuKt4wJValHZMNLVRWirsVjslnLxVo_Ic9ivM6y4ax9Sk4kr5uKlWJD7i7GEXWK1I003Tia9h4PAi2G7Z4GjCkYnYyzNK8Z09V-goOccIfTgYXBeGdzjLHZoNEnFyinYIcM-T9O3Q7DBN4bu6UpgI06GJ9oRoDObolIZ5hnCHualqwD3ZmwxOKAji7Mq28b3E26oiPonFj8uKV9QIiJarAaw0OMG3B6Tp6MMEV8cdxPybf3F1_PPxaXnz98On93WWipZCpUU-pS9n1dNQiKwyhZP3AoYRAMtO6rQbUMGeZChW0jhZI1NJxzrNnQKiVPydl9rg_u-5K_rJtN1DhNYDF30wnJhWiE4nVGX_-FXudn2txdJ8q6bZuSiSZT_J7SwcUYcOx8MOu3dJx16-y7f2afPa-OyUs_4_DL8TDsDMhjKMx9MMMWf9_9_9ifEg-_kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469984028</pqid></control><display><type>article</type><title>Effects of two types of energy restriction on methylation levels of adiponectin receptor 1 and leptin receptor overlapping transcript in a mouse mammary tumour virus-transforming growth factor-α breast cancer mouse model</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Cicekdal, M. B. ; Kazan, B. T. ; Tuna, B. G. ; Ozorhan, U. ; Ekici, I. D. ; Zhu, F. ; Suakar, O. ; Kuskucu, A. ; Bayrak, O. F. ; Arcaro, K. ; Cleary, M. P. ; Dogan, S. ; Atasayan, O. ; Yilmaz, B.</creator><creatorcontrib>Cicekdal, M. B. ; Kazan, B. T. ; Tuna, B. G. ; Ozorhan, U. ; Ekici, I. D. ; Zhu, F. ; Suakar, O. ; Kuskucu, A. ; Bayrak, O. F. ; Arcaro, K. ; Cleary, M. P. ; Dogan, S. ; Atasayan, O. ; Yilmaz, B.</creatorcontrib><description>The role of adiponectin and leptin signalling pathways has been suggested to play important roles in the protective effects of energy restriction (ER) on mammary tumour (MT) development. To study the effects of ER on the methylation levels in adiponectin receptor 1 (AdipoR1) and leptin receptor overlapping transcript (Leprot) genes using the pyrosequencing method in mammary fat pad tissue, mouse mammary tumour virus-transforming growth factor-α (MMTV-TGF-α) female mice were randomly assigned to ad libitum (AL), chronic ER (CER, 15 % ER) or intermittent ER (3 weeks AL and 1 week 60 % ER in cyclic periods) groups at 10 weeks of age until 82 weeks of age. The methylation levels of AdipoR1 in the CER group were higher than those in the AL group at week 49/50 (P < 0·05), while the levels of methylation for AdipoR1 and Leprot genes were similar among the other groups. Also, the methylation levels at CpG2 and CpG3 regions of the promoter region of the AdipoR1 gene in the CER group were three times higher (P < 0·05), while CpG1 island of Leprot methylation was significantly lower compared with the other groups (P < 0·05). Adiponectin and leptin gene expression levels were consistent with the methylation levels. We also observed a change with ageing in methylation levels of these genes. These results indicate that different types of ER modify methylation levels of AdipoR1 and Leprot in different ways and CER had a more significant effect on methylation levels of both genes. Epigenetic regulation of these genes may play important roles in the preventive effects of ER against MT development and ageing processes.</description><identifier>ISSN: 0007-1145</identifier><identifier>EISSN: 1475-2662</identifier><identifier>DOI: 10.1017/S0007114519002757</identifier><identifier>PMID: 31685042</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adaptor Proteins, Signal Transducing - metabolism ; Adiponectin ; Age ; Aging ; Animals ; Breast cancer ; Caloric Restriction - methods ; CpG Islands ; Deoxyribonucleic acid ; DNA ; DNA methylation ; Energy ; Energy Intake - genetics ; Epigenetics ; Female ; Food ; Gene expression ; Gene regulation ; Genes ; Genetic testing ; Growth factors ; Mammary Neoplasms, Experimental - diet therapy ; Mammary Neoplasms, Experimental - genetics ; Mammary Tumor Virus, Mouse - metabolism ; Methylation ; Mice ; Molecular Nutrition ; Obesity ; Receptors ; Receptors, Adiponectin - metabolism ; Roles ; Signal transduction ; Signal Transduction - genetics ; Transcription ; Transforming Growth Factor alpha - metabolism ; Transforming growth factor-a ; Tumor viruses ; Tumors ; Viruses ; Womens health</subject><ispartof>British journal of nutrition, 2021-01, Vol.125 (1), p.1-9</ispartof><rights>The Authors 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-784c43bb658ea71af30bd1a4ad20accb5d790e0eaf35e9832736a8111e60d9773</citedby><cites>FETCH-LOGICAL-c373t-784c43bb658ea71af30bd1a4ad20accb5d790e0eaf35e9832736a8111e60d9773</cites><orcidid>0000-0002-1986-0815 ; 0000-0002-7661-2818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0007114519002757/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31685042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cicekdal, M. B.</creatorcontrib><creatorcontrib>Kazan, B. T.</creatorcontrib><creatorcontrib>Tuna, B. G.</creatorcontrib><creatorcontrib>Ozorhan, U.</creatorcontrib><creatorcontrib>Ekici, I. D.</creatorcontrib><creatorcontrib>Zhu, F.</creatorcontrib><creatorcontrib>Suakar, O.</creatorcontrib><creatorcontrib>Kuskucu, A.</creatorcontrib><creatorcontrib>Bayrak, O. F.</creatorcontrib><creatorcontrib>Arcaro, K.</creatorcontrib><creatorcontrib>Cleary, M. P.</creatorcontrib><creatorcontrib>Dogan, S.</creatorcontrib><creatorcontrib>Atasayan, O.</creatorcontrib><creatorcontrib>Yilmaz, B.</creatorcontrib><title>Effects of two types of energy restriction on methylation levels of adiponectin receptor 1 and leptin receptor overlapping transcript in a mouse mammary tumour virus-transforming growth factor-α breast cancer mouse model</title><title>British journal of nutrition</title><addtitle>Br J Nutr</addtitle><description>The role of adiponectin and leptin signalling pathways has been suggested to play important roles in the protective effects of energy restriction (ER) on mammary tumour (MT) development. To study the effects of ER on the methylation levels in adiponectin receptor 1 (AdipoR1) and leptin receptor overlapping transcript (Leprot) genes using the pyrosequencing method in mammary fat pad tissue, mouse mammary tumour virus-transforming growth factor-α (MMTV-TGF-α) female mice were randomly assigned to ad libitum (AL), chronic ER (CER, 15 % ER) or intermittent ER (3 weeks AL and 1 week 60 % ER in cyclic periods) groups at 10 weeks of age until 82 weeks of age. The methylation levels of AdipoR1 in the CER group were higher than those in the AL group at week 49/50 (P < 0·05), while the levels of methylation for AdipoR1 and Leprot genes were similar among the other groups. Also, the methylation levels at CpG2 and CpG3 regions of the promoter region of the AdipoR1 gene in the CER group were three times higher (P < 0·05), while CpG1 island of Leprot methylation was significantly lower compared with the other groups (P < 0·05). Adiponectin and leptin gene expression levels were consistent with the methylation levels. We also observed a change with ageing in methylation levels of these genes. These results indicate that different types of ER modify methylation levels of AdipoR1 and Leprot in different ways and CER had a more significant effect on methylation levels of both genes. Epigenetic regulation of these genes may play important roles in the preventive effects of ER against MT development and ageing processes.</description><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Adiponectin</subject><subject>Age</subject><subject>Aging</subject><subject>Animals</subject><subject>Breast cancer</subject><subject>Caloric Restriction - methods</subject><subject>CpG Islands</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Energy</subject><subject>Energy Intake - genetics</subject><subject>Epigenetics</subject><subject>Female</subject><subject>Food</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetic testing</subject><subject>Growth factors</subject><subject>Mammary Neoplasms, Experimental - diet therapy</subject><subject>Mammary Neoplasms, Experimental - genetics</subject><subject>Mammary Tumor Virus, Mouse - metabolism</subject><subject>Methylation</subject><subject>Mice</subject><subject>Molecular Nutrition</subject><subject>Obesity</subject><subject>Receptors</subject><subject>Receptors, Adiponectin - metabolism</subject><subject>Roles</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Transcription</subject><subject>Transforming Growth Factor alpha - metabolism</subject><subject>Transforming growth factor-a</subject><subject>Tumor viruses</subject><subject>Tumors</subject><subject>Viruses</subject><subject>Womens health</subject><issn>0007-1145</issn><issn>1475-2662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc1u1DAUhS0EokPhAdggS2y6CfgniZMlqsqPVIkFsI5unJupq8Q2tjPVPFZfhDfou-BMpyBASJas4_ud42tfQl5y9oYzrt5-YYwpzsuKt4wJValHZMNLVRWirsVjslnLxVo_Ic9ivM6y4ax9Sk4kr5uKlWJD7i7GEXWK1I003Tia9h4PAi2G7Z4GjCkYnYyzNK8Z09V-goOccIfTgYXBeGdzjLHZoNEnFyinYIcM-T9O3Q7DBN4bu6UpgI06GJ9oRoDObolIZ5hnCHualqwD3ZmwxOKAji7Mq28b3E26oiPonFj8uKV9QIiJarAaw0OMG3B6Tp6MMEV8cdxPybf3F1_PPxaXnz98On93WWipZCpUU-pS9n1dNQiKwyhZP3AoYRAMtO6rQbUMGeZChW0jhZI1NJxzrNnQKiVPydl9rg_u-5K_rJtN1DhNYDF30wnJhWiE4nVGX_-FXudn2txdJ8q6bZuSiSZT_J7SwcUYcOx8MOu3dJx16-y7f2afPa-OyUs_4_DL8TDsDMhjKMx9MMMWf9_9_9ifEg-_kw</recordid><startdate>20210114</startdate><enddate>20210114</enddate><creator>Cicekdal, M. B.</creator><creator>Kazan, B. T.</creator><creator>Tuna, B. G.</creator><creator>Ozorhan, U.</creator><creator>Ekici, I. D.</creator><creator>Zhu, F.</creator><creator>Suakar, O.</creator><creator>Kuskucu, A.</creator><creator>Bayrak, O. F.</creator><creator>Arcaro, K.</creator><creator>Cleary, M. P.</creator><creator>Dogan, S.</creator><creator>Atasayan, O.</creator><creator>Yilmaz, B.</creator><general>Cambridge University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7T5</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1986-0815</orcidid><orcidid>https://orcid.org/0000-0002-7661-2818</orcidid></search><sort><creationdate>20210114</creationdate><title>Effects of two types of energy restriction on methylation levels of adiponectin receptor 1 and leptin receptor overlapping transcript in a mouse mammary tumour virus-transforming growth factor-α breast cancer mouse model</title><author>Cicekdal, M. B. ; Kazan, B. T. ; Tuna, B. G. ; Ozorhan, U. ; Ekici, I. D. ; Zhu, F. ; Suakar, O. ; Kuskucu, A. ; Bayrak, O. F. ; Arcaro, K. ; Cleary, M. P. ; Dogan, S. ; Atasayan, O. ; Yilmaz, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-784c43bb658ea71af30bd1a4ad20accb5d790e0eaf35e9832736a8111e60d9773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Adiponectin</topic><topic>Age</topic><topic>Aging</topic><topic>Animals</topic><topic>Breast cancer</topic><topic>Caloric Restriction - methods</topic><topic>CpG Islands</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Energy</topic><topic>Energy Intake - genetics</topic><topic>Epigenetics</topic><topic>Female</topic><topic>Food</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetic testing</topic><topic>Growth factors</topic><topic>Mammary Neoplasms, Experimental - diet therapy</topic><topic>Mammary Neoplasms, Experimental - genetics</topic><topic>Mammary Tumor Virus, Mouse - metabolism</topic><topic>Methylation</topic><topic>Mice</topic><topic>Molecular Nutrition</topic><topic>Obesity</topic><topic>Receptors</topic><topic>Receptors, Adiponectin - metabolism</topic><topic>Roles</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Transcription</topic><topic>Transforming Growth Factor alpha - metabolism</topic><topic>Transforming growth factor-a</topic><topic>Tumor viruses</topic><topic>Tumors</topic><topic>Viruses</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cicekdal, M. B.</creatorcontrib><creatorcontrib>Kazan, B. T.</creatorcontrib><creatorcontrib>Tuna, B. G.</creatorcontrib><creatorcontrib>Ozorhan, U.</creatorcontrib><creatorcontrib>Ekici, I. D.</creatorcontrib><creatorcontrib>Zhu, F.</creatorcontrib><creatorcontrib>Suakar, O.</creatorcontrib><creatorcontrib>Kuskucu, A.</creatorcontrib><creatorcontrib>Bayrak, O. F.</creatorcontrib><creatorcontrib>Arcaro, K.</creatorcontrib><creatorcontrib>Cleary, M. P.</creatorcontrib><creatorcontrib>Dogan, S.</creatorcontrib><creatorcontrib>Atasayan, O.</creatorcontrib><creatorcontrib>Yilmaz, B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cicekdal, M. B.</au><au>Kazan, B. T.</au><au>Tuna, B. G.</au><au>Ozorhan, U.</au><au>Ekici, I. D.</au><au>Zhu, F.</au><au>Suakar, O.</au><au>Kuskucu, A.</au><au>Bayrak, O. F.</au><au>Arcaro, K.</au><au>Cleary, M. P.</au><au>Dogan, S.</au><au>Atasayan, O.</au><au>Yilmaz, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of two types of energy restriction on methylation levels of adiponectin receptor 1 and leptin receptor overlapping transcript in a mouse mammary tumour virus-transforming growth factor-α breast cancer mouse model</atitle><jtitle>British journal of nutrition</jtitle><addtitle>Br J Nutr</addtitle><date>2021-01-14</date><risdate>2021</risdate><volume>125</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0007-1145</issn><eissn>1475-2662</eissn><abstract>The role of adiponectin and leptin signalling pathways has been suggested to play important roles in the protective effects of energy restriction (ER) on mammary tumour (MT) development. To study the effects of ER on the methylation levels in adiponectin receptor 1 (AdipoR1) and leptin receptor overlapping transcript (Leprot) genes using the pyrosequencing method in mammary fat pad tissue, mouse mammary tumour virus-transforming growth factor-α (MMTV-TGF-α) female mice were randomly assigned to ad libitum (AL), chronic ER (CER, 15 % ER) or intermittent ER (3 weeks AL and 1 week 60 % ER in cyclic periods) groups at 10 weeks of age until 82 weeks of age. The methylation levels of AdipoR1 in the CER group were higher than those in the AL group at week 49/50 (P < 0·05), while the levels of methylation for AdipoR1 and Leprot genes were similar among the other groups. Also, the methylation levels at CpG2 and CpG3 regions of the promoter region of the AdipoR1 gene in the CER group were three times higher (P < 0·05), while CpG1 island of Leprot methylation was significantly lower compared with the other groups (P < 0·05). Adiponectin and leptin gene expression levels were consistent with the methylation levels. We also observed a change with ageing in methylation levels of these genes. These results indicate that different types of ER modify methylation levels of AdipoR1 and Leprot in different ways and CER had a more significant effect on methylation levels of both genes. Epigenetic regulation of these genes may play important roles in the preventive effects of ER against MT development and ageing processes.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>31685042</pmid><doi>10.1017/S0007114519002757</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1986-0815</orcidid><orcidid>https://orcid.org/0000-0002-7661-2818</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1145 |
ispartof | British journal of nutrition, 2021-01, Vol.125 (1), p.1-9 |
issn | 0007-1145 1475-2662 |
language | eng |
recordid | cdi_proquest_miscellaneous_2312282716 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge Journals; Free Full-Text Journals in Chemistry |
subjects | Adaptor Proteins, Signal Transducing - metabolism Adiponectin Age Aging Animals Breast cancer Caloric Restriction - methods CpG Islands Deoxyribonucleic acid DNA DNA methylation Energy Energy Intake - genetics Epigenetics Female Food Gene expression Gene regulation Genes Genetic testing Growth factors Mammary Neoplasms, Experimental - diet therapy Mammary Neoplasms, Experimental - genetics Mammary Tumor Virus, Mouse - metabolism Methylation Mice Molecular Nutrition Obesity Receptors Receptors, Adiponectin - metabolism Roles Signal transduction Signal Transduction - genetics Transcription Transforming Growth Factor alpha - metabolism Transforming growth factor-a Tumor viruses Tumors Viruses Womens health |
title | Effects of two types of energy restriction on methylation levels of adiponectin receptor 1 and leptin receptor overlapping transcript in a mouse mammary tumour virus-transforming growth factor-α breast cancer mouse model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20two%20types%20of%20energy%20restriction%20on%20methylation%20levels%20of%20adiponectin%20receptor%201%20and%20leptin%20receptor%20overlapping%20transcript%20in%20a%20mouse%20mammary%20tumour%20virus-transforming%20growth%20factor-%CE%B1%20breast%20cancer%20mouse%20model&rft.jtitle=British%20journal%20of%20nutrition&rft.au=Cicekdal,%20M.%20B.&rft.date=2021-01-14&rft.volume=125&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0007-1145&rft.eissn=1475-2662&rft_id=info:doi/10.1017/S0007114519002757&rft_dat=%3Cproquest_cross%3E2312282716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469984028&rft_id=info:pmid/31685042&rft_cupid=10_1017_S0007114519002757&rfr_iscdi=true |