Unveiling fungal detoxification pathways of the cruciferous phytoalexin rapalexin A: Sequential L-cysteine conjugation, acetylation and oxidative cyclization mediated by Colletotrichum spp

The metabolism of the phytoalexin rapalexin A, a unique indole isothiocyanate (ITC) produced by crucifers (family Brassicaceae), was investigated. Three phytopathogenic fungal species were examined: Colletotrichum dematium (Pers.:Fr.) Grove, a broad host range pathogen, C. higginsianum Sacc., a host...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytochemistry (Oxford) 2020-01, Vol.169, p.112188-112188, Article 112188
Hauptverfasser: Pedras, M. Soledade C., Thapa, Chintamani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112188
container_issue
container_start_page 112188
container_title Phytochemistry (Oxford)
container_volume 169
creator Pedras, M. Soledade C.
Thapa, Chintamani
description The metabolism of the phytoalexin rapalexin A, a unique indole isothiocyanate (ITC) produced by crucifers (family Brassicaceae), was investigated. Three phytopathogenic fungal species were examined: Colletotrichum dematium (Pers.:Fr.) Grove, a broad host range pathogen, C. higginsianum Sacc., a host-selective pathogen of crucifers and C. lentis Damm, a host-selective pathogen of lentils (Lens culinaris Medik.). The metabolism of rapalexin A by C. dematium and C. higginsianum was similar, taking place via one common intermediate and two divergent pathways, but C. lentis was unable to transform rapalexin A. Both C. higginsianum and C. dematium transformed rapalexin A to two previously undescribed metabolites, the structures of which were confirmed by chemical synthesis: N-acetyl-S-(8-methoxy-4H-thiazolo[5,4-b]indol-2-yl)-L-cysteine and 4-hydroxy-3-(4-methoxy-1H-indol-3-yl)-2-thioxothiazolidine-4-carboxylic acid. That is, both fungal pathogens metabolized and detoxified rapalexin A by addition of the thiol group of L-Cys residue to the isothiocyanate carbon of rapalexin A, a transformation usually catalyzed by glutathione transferases. Coincidentally, this metabolic pathway is employed by mammals and insects to detoxify isothiocyanates and other xenobiotics. Hence, C. higginsianum could be a useful model fungus to uncover genes involved in the detoxification pathways of ITCs and related xenobiotics. Our overall results suggest that increasing rapalexin A production in specific crucifers could increase crop resistance to certain fungal pathogens. The metabolism of rapalexin A by Colletotrichum dematium, C. higginsianum and C. lentis is reported. [Display omitted] •Investigation of the metabolism of the phytoalexin rapalexin A by Colletotrichum spp.•Rapalexin A was transformed to two different metabolites by C. dematium and C.higginsianum.•Both fungal pathogens detoxified rapalexin A by conjugation with L-Cys.•C. lentis did not metabolize rapalexin A.
doi_str_mv 10.1016/j.phytochem.2019.112188
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2312270484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031942219307903</els_id><sourcerecordid>2312270484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a4085d98361d72c907b94f1cf1ad22429685dcfea6f2169ca7a21e69b058d9cf3</originalsourceid><addsrcrecordid>eNqFUctu2zAQJIoGjZv2F1oee6gckpL16M0w-gIC9JDkTNDk0qJBkSpJuVG_rR9XJnJz7YlL7MzOzg5C7ylZU0Lr6-N67OfkZQ_DmhHarSlltG1foBVtm7IoG0JeohUhJS26irFL9DrGIyFks6nrV-iypHVbMtau0J97dwJjjTtgPbmDsFhB8g9GGymS8Q6PIvW_xByx1zj1gGWYpNEQ_BTx0w7CwoNxOIjxXG0_4Vv4OYFLJo-7KeQcExiXqd4dp8PT2I9YSEizXTSEUzhrqvw7Zdgsrfm9dAZQRiRQeD_jnbc275aCkf004DiOb9CFFjbC2_N7he6_fL7bfStufnz9vttm6bKhqRAVaTeqa8uaqobJjjT7rtJUaioUYxXr6tyWGkStGa07KRrBKNTdnmxa1UldXqEPy9wx-GwsJj6YKMFa4SDfgbOSMtaQqq0ytFmgMvgYA2g-BjOIMHNK-GN0_Mifo-OP0fElusx8dxaZ9tn2M-9fVhmwXQCQrZ4MBB6lASfziQLIxJU3_xX5C_ZbtVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312270484</pqid></control><display><type>article</type><title>Unveiling fungal detoxification pathways of the cruciferous phytoalexin rapalexin A: Sequential L-cysteine conjugation, acetylation and oxidative cyclization mediated by Colletotrichum spp</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Pedras, M. Soledade C. ; Thapa, Chintamani</creator><creatorcontrib>Pedras, M. Soledade C. ; Thapa, Chintamani</creatorcontrib><description>The metabolism of the phytoalexin rapalexin A, a unique indole isothiocyanate (ITC) produced by crucifers (family Brassicaceae), was investigated. Three phytopathogenic fungal species were examined: Colletotrichum dematium (Pers.:Fr.) Grove, a broad host range pathogen, C. higginsianum Sacc., a host-selective pathogen of crucifers and C. lentis Damm, a host-selective pathogen of lentils (Lens culinaris Medik.). The metabolism of rapalexin A by C. dematium and C. higginsianum was similar, taking place via one common intermediate and two divergent pathways, but C. lentis was unable to transform rapalexin A. Both C. higginsianum and C. dematium transformed rapalexin A to two previously undescribed metabolites, the structures of which were confirmed by chemical synthesis: N-acetyl-S-(8-methoxy-4H-thiazolo[5,4-b]indol-2-yl)-L-cysteine and 4-hydroxy-3-(4-methoxy-1H-indol-3-yl)-2-thioxothiazolidine-4-carboxylic acid. That is, both fungal pathogens metabolized and detoxified rapalexin A by addition of the thiol group of L-Cys residue to the isothiocyanate carbon of rapalexin A, a transformation usually catalyzed by glutathione transferases. Coincidentally, this metabolic pathway is employed by mammals and insects to detoxify isothiocyanates and other xenobiotics. Hence, C. higginsianum could be a useful model fungus to uncover genes involved in the detoxification pathways of ITCs and related xenobiotics. Our overall results suggest that increasing rapalexin A production in specific crucifers could increase crop resistance to certain fungal pathogens. The metabolism of rapalexin A by Colletotrichum dematium, C. higginsianum and C. lentis is reported. [Display omitted] •Investigation of the metabolism of the phytoalexin rapalexin A by Colletotrichum spp.•Rapalexin A was transformed to two different metabolites by C. dematium and C.higginsianum.•Both fungal pathogens detoxified rapalexin A by conjugation with L-Cys.•C. lentis did not metabolize rapalexin A.</description><identifier>ISSN: 0031-9422</identifier><identifier>EISSN: 1873-3700</identifier><identifier>DOI: 10.1016/j.phytochem.2019.112188</identifier><identifier>PMID: 31683228</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acetylation ; Brassicaceae ; Brassicaceae - chemistry ; Brassicaceae - metabolism ; C. higginsianum ; C. lentis ; Colletotrichum - metabolism ; Colletotrichum dematium ; crucifer ; Cyclization ; Cysteine - chemistry ; Cysteine - metabolism ; Detoxification ; Isothiocyanate ; Isothiocyanates - chemistry ; Isothiocyanates - metabolism ; Molecular Structure ; Oxidative Stress ; Phytoalexin ; Rapalexin A ; Sesquiterpenes - chemistry ; Sesquiterpenes - metabolism</subject><ispartof>Phytochemistry (Oxford), 2020-01, Vol.169, p.112188-112188, Article 112188</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-a4085d98361d72c907b94f1cf1ad22429685dcfea6f2169ca7a21e69b058d9cf3</citedby><cites>FETCH-LOGICAL-c371t-a4085d98361d72c907b94f1cf1ad22429685dcfea6f2169ca7a21e69b058d9cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.phytochem.2019.112188$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31683228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pedras, M. Soledade C.</creatorcontrib><creatorcontrib>Thapa, Chintamani</creatorcontrib><title>Unveiling fungal detoxification pathways of the cruciferous phytoalexin rapalexin A: Sequential L-cysteine conjugation, acetylation and oxidative cyclization mediated by Colletotrichum spp</title><title>Phytochemistry (Oxford)</title><addtitle>Phytochemistry</addtitle><description>The metabolism of the phytoalexin rapalexin A, a unique indole isothiocyanate (ITC) produced by crucifers (family Brassicaceae), was investigated. Three phytopathogenic fungal species were examined: Colletotrichum dematium (Pers.:Fr.) Grove, a broad host range pathogen, C. higginsianum Sacc., a host-selective pathogen of crucifers and C. lentis Damm, a host-selective pathogen of lentils (Lens culinaris Medik.). The metabolism of rapalexin A by C. dematium and C. higginsianum was similar, taking place via one common intermediate and two divergent pathways, but C. lentis was unable to transform rapalexin A. Both C. higginsianum and C. dematium transformed rapalexin A to two previously undescribed metabolites, the structures of which were confirmed by chemical synthesis: N-acetyl-S-(8-methoxy-4H-thiazolo[5,4-b]indol-2-yl)-L-cysteine and 4-hydroxy-3-(4-methoxy-1H-indol-3-yl)-2-thioxothiazolidine-4-carboxylic acid. That is, both fungal pathogens metabolized and detoxified rapalexin A by addition of the thiol group of L-Cys residue to the isothiocyanate carbon of rapalexin A, a transformation usually catalyzed by glutathione transferases. Coincidentally, this metabolic pathway is employed by mammals and insects to detoxify isothiocyanates and other xenobiotics. Hence, C. higginsianum could be a useful model fungus to uncover genes involved in the detoxification pathways of ITCs and related xenobiotics. Our overall results suggest that increasing rapalexin A production in specific crucifers could increase crop resistance to certain fungal pathogens. The metabolism of rapalexin A by Colletotrichum dematium, C. higginsianum and C. lentis is reported. [Display omitted] •Investigation of the metabolism of the phytoalexin rapalexin A by Colletotrichum spp.•Rapalexin A was transformed to two different metabolites by C. dematium and C.higginsianum.•Both fungal pathogens detoxified rapalexin A by conjugation with L-Cys.•C. lentis did not metabolize rapalexin A.</description><subject>Acetylation</subject><subject>Brassicaceae</subject><subject>Brassicaceae - chemistry</subject><subject>Brassicaceae - metabolism</subject><subject>C. higginsianum</subject><subject>C. lentis</subject><subject>Colletotrichum - metabolism</subject><subject>Colletotrichum dematium</subject><subject>crucifer</subject><subject>Cyclization</subject><subject>Cysteine - chemistry</subject><subject>Cysteine - metabolism</subject><subject>Detoxification</subject><subject>Isothiocyanate</subject><subject>Isothiocyanates - chemistry</subject><subject>Isothiocyanates - metabolism</subject><subject>Molecular Structure</subject><subject>Oxidative Stress</subject><subject>Phytoalexin</subject><subject>Rapalexin A</subject><subject>Sesquiterpenes - chemistry</subject><subject>Sesquiterpenes - metabolism</subject><issn>0031-9422</issn><issn>1873-3700</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUctu2zAQJIoGjZv2F1oee6gckpL16M0w-gIC9JDkTNDk0qJBkSpJuVG_rR9XJnJz7YlL7MzOzg5C7ylZU0Lr6-N67OfkZQ_DmhHarSlltG1foBVtm7IoG0JeohUhJS26irFL9DrGIyFks6nrV-iypHVbMtau0J97dwJjjTtgPbmDsFhB8g9GGymS8Q6PIvW_xByx1zj1gGWYpNEQ_BTx0w7CwoNxOIjxXG0_4Vv4OYFLJo-7KeQcExiXqd4dp8PT2I9YSEizXTSEUzhrqvw7Zdgsrfm9dAZQRiRQeD_jnbc275aCkf004DiOb9CFFjbC2_N7he6_fL7bfStufnz9vttm6bKhqRAVaTeqa8uaqobJjjT7rtJUaioUYxXr6tyWGkStGa07KRrBKNTdnmxa1UldXqEPy9wx-GwsJj6YKMFa4SDfgbOSMtaQqq0ytFmgMvgYA2g-BjOIMHNK-GN0_Mifo-OP0fElusx8dxaZ9tn2M-9fVhmwXQCQrZ4MBB6lASfziQLIxJU3_xX5C_ZbtVs</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Pedras, M. Soledade C.</creator><creator>Thapa, Chintamani</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202001</creationdate><title>Unveiling fungal detoxification pathways of the cruciferous phytoalexin rapalexin A: Sequential L-cysteine conjugation, acetylation and oxidative cyclization mediated by Colletotrichum spp</title><author>Pedras, M. Soledade C. ; Thapa, Chintamani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a4085d98361d72c907b94f1cf1ad22429685dcfea6f2169ca7a21e69b058d9cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetylation</topic><topic>Brassicaceae</topic><topic>Brassicaceae - chemistry</topic><topic>Brassicaceae - metabolism</topic><topic>C. higginsianum</topic><topic>C. lentis</topic><topic>Colletotrichum - metabolism</topic><topic>Colletotrichum dematium</topic><topic>crucifer</topic><topic>Cyclization</topic><topic>Cysteine - chemistry</topic><topic>Cysteine - metabolism</topic><topic>Detoxification</topic><topic>Isothiocyanate</topic><topic>Isothiocyanates - chemistry</topic><topic>Isothiocyanates - metabolism</topic><topic>Molecular Structure</topic><topic>Oxidative Stress</topic><topic>Phytoalexin</topic><topic>Rapalexin A</topic><topic>Sesquiterpenes - chemistry</topic><topic>Sesquiterpenes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedras, M. Soledade C.</creatorcontrib><creatorcontrib>Thapa, Chintamani</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Phytochemistry (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedras, M. Soledade C.</au><au>Thapa, Chintamani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling fungal detoxification pathways of the cruciferous phytoalexin rapalexin A: Sequential L-cysteine conjugation, acetylation and oxidative cyclization mediated by Colletotrichum spp</atitle><jtitle>Phytochemistry (Oxford)</jtitle><addtitle>Phytochemistry</addtitle><date>2020-01</date><risdate>2020</risdate><volume>169</volume><spage>112188</spage><epage>112188</epage><pages>112188-112188</pages><artnum>112188</artnum><issn>0031-9422</issn><eissn>1873-3700</eissn><abstract>The metabolism of the phytoalexin rapalexin A, a unique indole isothiocyanate (ITC) produced by crucifers (family Brassicaceae), was investigated. Three phytopathogenic fungal species were examined: Colletotrichum dematium (Pers.:Fr.) Grove, a broad host range pathogen, C. higginsianum Sacc., a host-selective pathogen of crucifers and C. lentis Damm, a host-selective pathogen of lentils (Lens culinaris Medik.). The metabolism of rapalexin A by C. dematium and C. higginsianum was similar, taking place via one common intermediate and two divergent pathways, but C. lentis was unable to transform rapalexin A. Both C. higginsianum and C. dematium transformed rapalexin A to two previously undescribed metabolites, the structures of which were confirmed by chemical synthesis: N-acetyl-S-(8-methoxy-4H-thiazolo[5,4-b]indol-2-yl)-L-cysteine and 4-hydroxy-3-(4-methoxy-1H-indol-3-yl)-2-thioxothiazolidine-4-carboxylic acid. That is, both fungal pathogens metabolized and detoxified rapalexin A by addition of the thiol group of L-Cys residue to the isothiocyanate carbon of rapalexin A, a transformation usually catalyzed by glutathione transferases. Coincidentally, this metabolic pathway is employed by mammals and insects to detoxify isothiocyanates and other xenobiotics. Hence, C. higginsianum could be a useful model fungus to uncover genes involved in the detoxification pathways of ITCs and related xenobiotics. Our overall results suggest that increasing rapalexin A production in specific crucifers could increase crop resistance to certain fungal pathogens. The metabolism of rapalexin A by Colletotrichum dematium, C. higginsianum and C. lentis is reported. [Display omitted] •Investigation of the metabolism of the phytoalexin rapalexin A by Colletotrichum spp.•Rapalexin A was transformed to two different metabolites by C. dematium and C.higginsianum.•Both fungal pathogens detoxified rapalexin A by conjugation with L-Cys.•C. lentis did not metabolize rapalexin A.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31683228</pmid><doi>10.1016/j.phytochem.2019.112188</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9422
ispartof Phytochemistry (Oxford), 2020-01, Vol.169, p.112188-112188, Article 112188
issn 0031-9422
1873-3700
language eng
recordid cdi_proquest_miscellaneous_2312270484
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Acetylation
Brassicaceae
Brassicaceae - chemistry
Brassicaceae - metabolism
C. higginsianum
C. lentis
Colletotrichum - metabolism
Colletotrichum dematium
crucifer
Cyclization
Cysteine - chemistry
Cysteine - metabolism
Detoxification
Isothiocyanate
Isothiocyanates - chemistry
Isothiocyanates - metabolism
Molecular Structure
Oxidative Stress
Phytoalexin
Rapalexin A
Sesquiterpenes - chemistry
Sesquiterpenes - metabolism
title Unveiling fungal detoxification pathways of the cruciferous phytoalexin rapalexin A: Sequential L-cysteine conjugation, acetylation and oxidative cyclization mediated by Colletotrichum spp
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20fungal%20detoxification%20pathways%20of%20the%20cruciferous%20phytoalexin%20rapalexin%20A:%20Sequential%20L-cysteine%20conjugation,%20acetylation%20and%20oxidative%20cyclization%20mediated%20by%20Colletotrichum%20spp&rft.jtitle=Phytochemistry%20(Oxford)&rft.au=Pedras,%20M.%20Soledade%20C.&rft.date=2020-01&rft.volume=169&rft.spage=112188&rft.epage=112188&rft.pages=112188-112188&rft.artnum=112188&rft.issn=0031-9422&rft.eissn=1873-3700&rft_id=info:doi/10.1016/j.phytochem.2019.112188&rft_dat=%3Cproquest_cross%3E2312270484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312270484&rft_id=info:pmid/31683228&rft_els_id=S0031942219307903&rfr_iscdi=true