The subcellular localization of two isopentenyl diphosphate isomerases in rice suggests a role for the endoplasmic reticulum in isoprenoid biosynthesis

Key message Both OsIPPI1 and OsIPPI2 enzymes are found in the endoplasmic reticulum, providing novel important insights into the role of this compartment in the synthesis of MVA pathway isoprenoids. Isoprenoids are synthesized from the precursor’s isopentenyl diphosphate (IPP) and dimethylallyl diph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant cell reports 2020, Vol.39 (1), p.119-133
Hauptverfasser: Jin, Xin, Baysal, Can, Gao, Lihong, Medina, Vicente, Drapal, Margit, Ni, Xiuzhen, Sheng, Yanmin, Shi, Lianxuan, Capell, Teresa, Fraser, Paul D., Christou, Paul, Zhu, Changfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 1
container_start_page 119
container_title Plant cell reports
container_volume 39
creator Jin, Xin
Baysal, Can
Gao, Lihong
Medina, Vicente
Drapal, Margit
Ni, Xiuzhen
Sheng, Yanmin
Shi, Lianxuan
Capell, Teresa
Fraser, Paul D.
Christou, Paul
Zhu, Changfu
description Key message Both OsIPPI1 and OsIPPI2 enzymes are found in the endoplasmic reticulum, providing novel important insights into the role of this compartment in the synthesis of MVA pathway isoprenoids. Isoprenoids are synthesized from the precursor’s isopentenyl diphosphate (IPP) and dimethylallyl diphosphosphate (DMAPP), which are interconverted by the enzyme isopentenyl diphosphate isomerase (IPPI). Many plants express multiple isoforms of IPPI, the only enzyme shared by the mevalonate (MVA) and non-mevalonate (MEP) pathways, but little is known about their specific roles. Rice ( Oryza sativa ) has two IPPI isoforms (OsIPPI1 and OsIPPI2). We, therefore, carried out a comprehensive comparison of IPPI gene expression, protein localization, and isoprenoid biosynthesis in this species. We found that OsIPPI1 mRNA was more abundant than OsIPPI2 mRNA in all tissues, and its expression in de-etiolated leaves mirrored the accumulation of phytosterols, suggesting a key role in the synthesis of MVA pathway isoprenoids. We investigated the subcellular localization of both isoforms by constitutively expressing them as fusions with synthetic green fluorescent protein. Both proteins localized to the endoplasmic reticulum (ER) as well as peroxisomes and mitochondria, whereas only OsIPPI2 was detected in plastids, due to an N-terminal transit peptide which is not present in OsIPPI1. Despite the plastidial location of OsIPPI2, the expression of OsIPPI2 mRNA did not mirror the accumulation of chlorophylls or carotenoids, indicating that OsIPPI2 may be a redundant component of the MEP pathway. The detection of both OsIPPI isoforms in the ER indicates that DMAPP can be synthesized de novo in this compartment. Our work shows that the ER plays an as yet unknown role in the synthesis of MVA-derived isoprenoids, with important implications for the metabolic engineering of isoprenoid biosynthesis in higher plants.
doi_str_mv 10.1007/s00299-019-02479-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2311920762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311920762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-cda407e6641d2c4d04feb4a878f1405be0de655f3f97b0e967c32d3e8df108573</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EoreFF2CBLLFhE_Bf4pslqgpFqsSmSOwix57c68qxgycRvbwIr4tDCkgsWFgjeb5zZjSHkBecveGM6bfImGjbivHyhNJtdf-I7LiSohJMfnlMdkwLXmnN1Rk5R7xjrDR185ScSd7oljV8R37cHoHi0lsIYQkm05CsCf67mX2KNA10_paoxzRBnCGeAnV-OiacjmaG9X-EbBCQ-kizt6vV4QA4IzU0pwB0SJnOZQREl6ZgcPSWZpi9XcIyrqrVO0NM3tHeJzzFQqPHZ-TJYALC84d6QT6_v7q9vK5uPn34ePnuprJS13NlnVFMQ9Mo7oRVjqkBemX2ej9wxeoemIOmrgc5tLpn0DbaSuEk7N3A2b7W8oK83nynnL4uZfNu9Lgew0RIC3ZCct4KphtR0Ff_oHdpybFsVyglFK83SmyUzQkxw9BN2Y8mnzrOujW2boutK7F1v2Lr7ovo5YP10o_g_kh-51QAuQFYWvEA-e_s_9j-BJ3Np7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342415762</pqid></control><display><type>article</type><title>The subcellular localization of two isopentenyl diphosphate isomerases in rice suggests a role for the endoplasmic reticulum in isoprenoid biosynthesis</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Jin, Xin ; Baysal, Can ; Gao, Lihong ; Medina, Vicente ; Drapal, Margit ; Ni, Xiuzhen ; Sheng, Yanmin ; Shi, Lianxuan ; Capell, Teresa ; Fraser, Paul D. ; Christou, Paul ; Zhu, Changfu</creator><creatorcontrib>Jin, Xin ; Baysal, Can ; Gao, Lihong ; Medina, Vicente ; Drapal, Margit ; Ni, Xiuzhen ; Sheng, Yanmin ; Shi, Lianxuan ; Capell, Teresa ; Fraser, Paul D. ; Christou, Paul ; Zhu, Changfu</creatorcontrib><description>Key message Both OsIPPI1 and OsIPPI2 enzymes are found in the endoplasmic reticulum, providing novel important insights into the role of this compartment in the synthesis of MVA pathway isoprenoids. Isoprenoids are synthesized from the precursor’s isopentenyl diphosphate (IPP) and dimethylallyl diphosphosphate (DMAPP), which are interconverted by the enzyme isopentenyl diphosphate isomerase (IPPI). Many plants express multiple isoforms of IPPI, the only enzyme shared by the mevalonate (MVA) and non-mevalonate (MEP) pathways, but little is known about their specific roles. Rice ( Oryza sativa ) has two IPPI isoforms (OsIPPI1 and OsIPPI2). We, therefore, carried out a comprehensive comparison of IPPI gene expression, protein localization, and isoprenoid biosynthesis in this species. We found that OsIPPI1 mRNA was more abundant than OsIPPI2 mRNA in all tissues, and its expression in de-etiolated leaves mirrored the accumulation of phytosterols, suggesting a key role in the synthesis of MVA pathway isoprenoids. We investigated the subcellular localization of both isoforms by constitutively expressing them as fusions with synthetic green fluorescent protein. Both proteins localized to the endoplasmic reticulum (ER) as well as peroxisomes and mitochondria, whereas only OsIPPI2 was detected in plastids, due to an N-terminal transit peptide which is not present in OsIPPI1. Despite the plastidial location of OsIPPI2, the expression of OsIPPI2 mRNA did not mirror the accumulation of chlorophylls or carotenoids, indicating that OsIPPI2 may be a redundant component of the MEP pathway. The detection of both OsIPPI isoforms in the ER indicates that DMAPP can be synthesized de novo in this compartment. Our work shows that the ER plays an as yet unknown role in the synthesis of MVA-derived isoprenoids, with important implications for the metabolic engineering of isoprenoid biosynthesis in higher plants.</description><identifier>ISSN: 0721-7714</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-019-02479-x</identifier><identifier>PMID: 31679061</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accumulation ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Carbon-Carbon Double Bond Isomerases - genetics ; Carbon-Carbon Double Bond Isomerases - metabolism ; Carotenoids ; Carotenoids - metabolism ; Cell Biology ; Chlorophyll ; Chlorophyll - metabolism ; Endoplasmic reticulum ; Endoplasmic Reticulum - enzymology ; Endoplasmic Reticulum - metabolism ; Enzymes ; Fluorescence ; Gene expression ; Gene Expression Regulation, Plant ; Green fluorescent protein ; Hemiterpenes - genetics ; Hemiterpenes - metabolism ; Isoforms ; Isopentenyl diphosphate ; Life Sciences ; Localization ; Metabolic engineering ; Mevalonate pathway ; Mevalonic acid ; Mevalonic Acid - metabolism ; Mitochondria ; Mitochondria - metabolism ; Organophosphorus Compounds - metabolism ; Original Article ; Oryza - enzymology ; Oryza - genetics ; Oryza - metabolism ; Oryza sativa ; Peroxisomes ; Peroxisomes - metabolism ; Phytosterols ; Plant Biochemistry ; Plant Leaves - metabolism ; Plant Sciences ; Plants, Genetically Modified - cytology ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Plastids ; Plastids - metabolism ; Protein biosynthesis ; Proteins ; Redundant components ; Rice ; Terpenes ; Terpenes - metabolism</subject><ispartof>Plant cell reports, 2020, Vol.39 (1), p.119-133</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Plant Cell Reports is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-cda407e6641d2c4d04feb4a878f1405be0de655f3f97b0e967c32d3e8df108573</citedby><cites>FETCH-LOGICAL-c375t-cda407e6641d2c4d04feb4a878f1405be0de655f3f97b0e967c32d3e8df108573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00299-019-02479-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00299-019-02479-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31679061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Baysal, Can</creatorcontrib><creatorcontrib>Gao, Lihong</creatorcontrib><creatorcontrib>Medina, Vicente</creatorcontrib><creatorcontrib>Drapal, Margit</creatorcontrib><creatorcontrib>Ni, Xiuzhen</creatorcontrib><creatorcontrib>Sheng, Yanmin</creatorcontrib><creatorcontrib>Shi, Lianxuan</creatorcontrib><creatorcontrib>Capell, Teresa</creatorcontrib><creatorcontrib>Fraser, Paul D.</creatorcontrib><creatorcontrib>Christou, Paul</creatorcontrib><creatorcontrib>Zhu, Changfu</creatorcontrib><title>The subcellular localization of two isopentenyl diphosphate isomerases in rice suggests a role for the endoplasmic reticulum in isoprenoid biosynthesis</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><addtitle>Plant Cell Rep</addtitle><description>Key message Both OsIPPI1 and OsIPPI2 enzymes are found in the endoplasmic reticulum, providing novel important insights into the role of this compartment in the synthesis of MVA pathway isoprenoids. Isoprenoids are synthesized from the precursor’s isopentenyl diphosphate (IPP) and dimethylallyl diphosphosphate (DMAPP), which are interconverted by the enzyme isopentenyl diphosphate isomerase (IPPI). Many plants express multiple isoforms of IPPI, the only enzyme shared by the mevalonate (MVA) and non-mevalonate (MEP) pathways, but little is known about their specific roles. Rice ( Oryza sativa ) has two IPPI isoforms (OsIPPI1 and OsIPPI2). We, therefore, carried out a comprehensive comparison of IPPI gene expression, protein localization, and isoprenoid biosynthesis in this species. We found that OsIPPI1 mRNA was more abundant than OsIPPI2 mRNA in all tissues, and its expression in de-etiolated leaves mirrored the accumulation of phytosterols, suggesting a key role in the synthesis of MVA pathway isoprenoids. We investigated the subcellular localization of both isoforms by constitutively expressing them as fusions with synthetic green fluorescent protein. Both proteins localized to the endoplasmic reticulum (ER) as well as peroxisomes and mitochondria, whereas only OsIPPI2 was detected in plastids, due to an N-terminal transit peptide which is not present in OsIPPI1. Despite the plastidial location of OsIPPI2, the expression of OsIPPI2 mRNA did not mirror the accumulation of chlorophylls or carotenoids, indicating that OsIPPI2 may be a redundant component of the MEP pathway. The detection of both OsIPPI isoforms in the ER indicates that DMAPP can be synthesized de novo in this compartment. Our work shows that the ER plays an as yet unknown role in the synthesis of MVA-derived isoprenoids, with important implications for the metabolic engineering of isoprenoid biosynthesis in higher plants.</description><subject>Accumulation</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Carbon-Carbon Double Bond Isomerases - genetics</subject><subject>Carbon-Carbon Double Bond Isomerases - metabolism</subject><subject>Carotenoids</subject><subject>Carotenoids - metabolism</subject><subject>Cell Biology</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - enzymology</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Enzymes</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Green fluorescent protein</subject><subject>Hemiterpenes - genetics</subject><subject>Hemiterpenes - metabolism</subject><subject>Isoforms</subject><subject>Isopentenyl diphosphate</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Metabolic engineering</subject><subject>Mevalonate pathway</subject><subject>Mevalonic acid</subject><subject>Mevalonic Acid - metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Organophosphorus Compounds - metabolism</subject><subject>Original Article</subject><subject>Oryza - enzymology</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Oryza sativa</subject><subject>Peroxisomes</subject><subject>Peroxisomes - metabolism</subject><subject>Phytosterols</subject><subject>Plant Biochemistry</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified - cytology</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Plastids</subject><subject>Plastids - metabolism</subject><subject>Protein biosynthesis</subject><subject>Proteins</subject><subject>Redundant components</subject><subject>Rice</subject><subject>Terpenes</subject><subject>Terpenes - metabolism</subject><issn>0721-7714</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1TAQhS0EoreFF2CBLLFhE_Bf4pslqgpFqsSmSOwix57c68qxgycRvbwIr4tDCkgsWFgjeb5zZjSHkBecveGM6bfImGjbivHyhNJtdf-I7LiSohJMfnlMdkwLXmnN1Rk5R7xjrDR185ScSd7oljV8R37cHoHi0lsIYQkm05CsCf67mX2KNA10_paoxzRBnCGeAnV-OiacjmaG9X-EbBCQ-kizt6vV4QA4IzU0pwB0SJnOZQREl6ZgcPSWZpi9XcIyrqrVO0NM3tHeJzzFQqPHZ-TJYALC84d6QT6_v7q9vK5uPn34ePnuprJS13NlnVFMQ9Mo7oRVjqkBemX2ej9wxeoemIOmrgc5tLpn0DbaSuEk7N3A2b7W8oK83nynnL4uZfNu9Lgew0RIC3ZCct4KphtR0Ff_oHdpybFsVyglFK83SmyUzQkxw9BN2Y8mnzrOujW2boutK7F1v2Lr7ovo5YP10o_g_kh-51QAuQFYWvEA-e_s_9j-BJ3Np7Q</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Jin, Xin</creator><creator>Baysal, Can</creator><creator>Gao, Lihong</creator><creator>Medina, Vicente</creator><creator>Drapal, Margit</creator><creator>Ni, Xiuzhen</creator><creator>Sheng, Yanmin</creator><creator>Shi, Lianxuan</creator><creator>Capell, Teresa</creator><creator>Fraser, Paul D.</creator><creator>Christou, Paul</creator><creator>Zhu, Changfu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2020</creationdate><title>The subcellular localization of two isopentenyl diphosphate isomerases in rice suggests a role for the endoplasmic reticulum in isoprenoid biosynthesis</title><author>Jin, Xin ; Baysal, Can ; Gao, Lihong ; Medina, Vicente ; Drapal, Margit ; Ni, Xiuzhen ; Sheng, Yanmin ; Shi, Lianxuan ; Capell, Teresa ; Fraser, Paul D. ; Christou, Paul ; Zhu, Changfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-cda407e6641d2c4d04feb4a878f1405be0de655f3f97b0e967c32d3e8df108573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulation</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Carbon-Carbon Double Bond Isomerases - genetics</topic><topic>Carbon-Carbon Double Bond Isomerases - metabolism</topic><topic>Carotenoids</topic><topic>Carotenoids - metabolism</topic><topic>Cell Biology</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - enzymology</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Enzymes</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Green fluorescent protein</topic><topic>Hemiterpenes - genetics</topic><topic>Hemiterpenes - metabolism</topic><topic>Isoforms</topic><topic>Isopentenyl diphosphate</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Metabolic engineering</topic><topic>Mevalonate pathway</topic><topic>Mevalonic acid</topic><topic>Mevalonic Acid - metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Organophosphorus Compounds - metabolism</topic><topic>Original Article</topic><topic>Oryza - enzymology</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Oryza sativa</topic><topic>Peroxisomes</topic><topic>Peroxisomes - metabolism</topic><topic>Phytosterols</topic><topic>Plant Biochemistry</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified - cytology</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Plastids</topic><topic>Plastids - metabolism</topic><topic>Protein biosynthesis</topic><topic>Proteins</topic><topic>Redundant components</topic><topic>Rice</topic><topic>Terpenes</topic><topic>Terpenes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Baysal, Can</creatorcontrib><creatorcontrib>Gao, Lihong</creatorcontrib><creatorcontrib>Medina, Vicente</creatorcontrib><creatorcontrib>Drapal, Margit</creatorcontrib><creatorcontrib>Ni, Xiuzhen</creatorcontrib><creatorcontrib>Sheng, Yanmin</creatorcontrib><creatorcontrib>Shi, Lianxuan</creatorcontrib><creatorcontrib>Capell, Teresa</creatorcontrib><creatorcontrib>Fraser, Paul D.</creatorcontrib><creatorcontrib>Christou, Paul</creatorcontrib><creatorcontrib>Zhu, Changfu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Xin</au><au>Baysal, Can</au><au>Gao, Lihong</au><au>Medina, Vicente</au><au>Drapal, Margit</au><au>Ni, Xiuzhen</au><au>Sheng, Yanmin</au><au>Shi, Lianxuan</au><au>Capell, Teresa</au><au>Fraser, Paul D.</au><au>Christou, Paul</au><au>Zhu, Changfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The subcellular localization of two isopentenyl diphosphate isomerases in rice suggests a role for the endoplasmic reticulum in isoprenoid biosynthesis</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><addtitle>Plant Cell Rep</addtitle><date>2020</date><risdate>2020</risdate><volume>39</volume><issue>1</issue><spage>119</spage><epage>133</epage><pages>119-133</pages><issn>0721-7714</issn><eissn>1432-203X</eissn><abstract>Key message Both OsIPPI1 and OsIPPI2 enzymes are found in the endoplasmic reticulum, providing novel important insights into the role of this compartment in the synthesis of MVA pathway isoprenoids. Isoprenoids are synthesized from the precursor’s isopentenyl diphosphate (IPP) and dimethylallyl diphosphosphate (DMAPP), which are interconverted by the enzyme isopentenyl diphosphate isomerase (IPPI). Many plants express multiple isoforms of IPPI, the only enzyme shared by the mevalonate (MVA) and non-mevalonate (MEP) pathways, but little is known about their specific roles. Rice ( Oryza sativa ) has two IPPI isoforms (OsIPPI1 and OsIPPI2). We, therefore, carried out a comprehensive comparison of IPPI gene expression, protein localization, and isoprenoid biosynthesis in this species. We found that OsIPPI1 mRNA was more abundant than OsIPPI2 mRNA in all tissues, and its expression in de-etiolated leaves mirrored the accumulation of phytosterols, suggesting a key role in the synthesis of MVA pathway isoprenoids. We investigated the subcellular localization of both isoforms by constitutively expressing them as fusions with synthetic green fluorescent protein. Both proteins localized to the endoplasmic reticulum (ER) as well as peroxisomes and mitochondria, whereas only OsIPPI2 was detected in plastids, due to an N-terminal transit peptide which is not present in OsIPPI1. Despite the plastidial location of OsIPPI2, the expression of OsIPPI2 mRNA did not mirror the accumulation of chlorophylls or carotenoids, indicating that OsIPPI2 may be a redundant component of the MEP pathway. The detection of both OsIPPI isoforms in the ER indicates that DMAPP can be synthesized de novo in this compartment. Our work shows that the ER plays an as yet unknown role in the synthesis of MVA-derived isoprenoids, with important implications for the metabolic engineering of isoprenoid biosynthesis in higher plants.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31679061</pmid><doi>10.1007/s00299-019-02479-x</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0721-7714
ispartof Plant cell reports, 2020, Vol.39 (1), p.119-133
issn 0721-7714
1432-203X
language eng
recordid cdi_proquest_miscellaneous_2311920762
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Accumulation
Biomedical and Life Sciences
Biosynthesis
Biotechnology
Carbon-Carbon Double Bond Isomerases - genetics
Carbon-Carbon Double Bond Isomerases - metabolism
Carotenoids
Carotenoids - metabolism
Cell Biology
Chlorophyll
Chlorophyll - metabolism
Endoplasmic reticulum
Endoplasmic Reticulum - enzymology
Endoplasmic Reticulum - metabolism
Enzymes
Fluorescence
Gene expression
Gene Expression Regulation, Plant
Green fluorescent protein
Hemiterpenes - genetics
Hemiterpenes - metabolism
Isoforms
Isopentenyl diphosphate
Life Sciences
Localization
Metabolic engineering
Mevalonate pathway
Mevalonic acid
Mevalonic Acid - metabolism
Mitochondria
Mitochondria - metabolism
Organophosphorus Compounds - metabolism
Original Article
Oryza - enzymology
Oryza - genetics
Oryza - metabolism
Oryza sativa
Peroxisomes
Peroxisomes - metabolism
Phytosterols
Plant Biochemistry
Plant Leaves - metabolism
Plant Sciences
Plants, Genetically Modified - cytology
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
Plastids
Plastids - metabolism
Protein biosynthesis
Proteins
Redundant components
Rice
Terpenes
Terpenes - metabolism
title The subcellular localization of two isopentenyl diphosphate isomerases in rice suggests a role for the endoplasmic reticulum in isoprenoid biosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20subcellular%20localization%20of%20two%20isopentenyl%20diphosphate%20isomerases%20in%20rice%20suggests%20a%20role%20for%20the%20endoplasmic%20reticulum%20in%20isoprenoid%20biosynthesis&rft.jtitle=Plant%20cell%20reports&rft.au=Jin,%20Xin&rft.date=2020&rft.volume=39&rft.issue=1&rft.spage=119&rft.epage=133&rft.pages=119-133&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-019-02479-x&rft_dat=%3Cproquest_cross%3E2311920762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342415762&rft_id=info:pmid/31679061&rfr_iscdi=true