A broad class of discrete-time hypercomplex-valued Hopfield neural networks

In this paper, we address the stability of a broad class of discrete-time hypercomplex-valued Hopfield-type neural networks. To ensure the neural networks belonging to this class always settle down at a stationary state, we introduce novel hypercomplex number systems referred to as real-part associa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2020-02, Vol.122, p.54-67
Hauptverfasser: de Castro, Fidelis Zanetti, Valle, Marcos Eduardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue
container_start_page 54
container_title Neural networks
container_volume 122
creator de Castro, Fidelis Zanetti
Valle, Marcos Eduardo
description In this paper, we address the stability of a broad class of discrete-time hypercomplex-valued Hopfield-type neural networks. To ensure the neural networks belonging to this class always settle down at a stationary state, we introduce novel hypercomplex number systems referred to as real-part associative hypercomplex number systems. Real-part associative hypercomplex number systems generalize the well-known Cayley–Dickson algebras and real Clifford algebras and include the systems of real numbers, complex numbers, dual numbers, hyperbolic numbers, quaternions, tessarines, and octonions as particular instances. Apart from the novel hypercomplex number systems, we introduce a family of hypercomplex-valued activation functions called B-projection functions. Broadly speaking, a B-projection function projects the activation potential onto the set of all possible states of a hypercomplex-valued neuron. Using the theory presented in this paper, we confirm the stability analysis of several discrete-time hypercomplex-valued Hopfield-type neural networks from the literature. Moreover, we introduce and provide the stability analysis of a general class of Hopfield-type neural networks on Cayley–Dickson algebras. •New hypercomplex number systems and a broad class of activation functions.•Stability analysis of discrete-time hypercomplex-valued Hopfield neural networks.•Hopfield-type neural networks on Cayley–Dickson and Clifford algebras.•Possible applications for multidimensional data processing.
doi_str_mv 10.1016/j.neunet.2019.09.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2311655546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608019303223</els_id><sourcerecordid>2311655546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-a0440fa3428e054bf767bb188b514246a077516ee6ad00b2ee399e5ceb98e05d3</originalsourceid><addsrcrecordid>eNp9ULFOwzAUtBCIlsIfIJSRJeHZcZxkQaoQUEQlFpgtx34RKUkd7KTQv8dVCyPSSbfcvbt3hFxSSChQcbNK1jiucUgY0DKBAA5HZEqLvIxZXrBjMoWiTGMBBUzImfcrABAFT0_JJKUizwTLp-R5HlXOKhPpVnkf2ToyjdcOB4yHpsPofduj07brW_yON6od0UQL29cNtiYKBZxqAw1f1n34c3JSq9bjxYFn5O3h_vVuES9fHp_u5stYp4INsQLOoVYpZwVCxqs6F3lV0aKoMsoZFwryPKMCUSgDUDHEtCwx01iVO4NJZ-R6f7d39nNEP8gudMa2VWu0o5cspVRkWcZFkPK9VDvrvcNa9q7plNtKCnI3o1zJ_YxyN6OEAA7BdnVIGKsOzZ_pd7cguN0LMPy5adBJrxtcazSNQz1IY5v_E34AbGSFrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311655546</pqid></control><display><type>article</type><title>A broad class of discrete-time hypercomplex-valued Hopfield neural networks</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>de Castro, Fidelis Zanetti ; Valle, Marcos Eduardo</creator><creatorcontrib>de Castro, Fidelis Zanetti ; Valle, Marcos Eduardo</creatorcontrib><description>In this paper, we address the stability of a broad class of discrete-time hypercomplex-valued Hopfield-type neural networks. To ensure the neural networks belonging to this class always settle down at a stationary state, we introduce novel hypercomplex number systems referred to as real-part associative hypercomplex number systems. Real-part associative hypercomplex number systems generalize the well-known Cayley–Dickson algebras and real Clifford algebras and include the systems of real numbers, complex numbers, dual numbers, hyperbolic numbers, quaternions, tessarines, and octonions as particular instances. Apart from the novel hypercomplex number systems, we introduce a family of hypercomplex-valued activation functions called B-projection functions. Broadly speaking, a B-projection function projects the activation potential onto the set of all possible states of a hypercomplex-valued neuron. Using the theory presented in this paper, we confirm the stability analysis of several discrete-time hypercomplex-valued Hopfield-type neural networks from the literature. Moreover, we introduce and provide the stability analysis of a general class of Hopfield-type neural networks on Cayley–Dickson algebras. •New hypercomplex number systems and a broad class of activation functions.•Stability analysis of discrete-time hypercomplex-valued Hopfield neural networks.•Hopfield-type neural networks on Cayley–Dickson and Clifford algebras.•Possible applications for multidimensional data processing.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2019.09.040</identifier><identifier>PMID: 31675627</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Cayley–Dickson algebra ; Clifford algebra ; Hopfield neural network ; Hypercomplex-valued neural network ; Neural Networks, Computer ; Stability analysis</subject><ispartof>Neural networks, 2020-02, Vol.122, p.54-67</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-a0440fa3428e054bf767bb188b514246a077516ee6ad00b2ee399e5ceb98e05d3</citedby><cites>FETCH-LOGICAL-c362t-a0440fa3428e054bf767bb188b514246a077516ee6ad00b2ee399e5ceb98e05d3</cites><orcidid>0000-0003-4026-5110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0893608019303223$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27902,27903,65308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31675627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Castro, Fidelis Zanetti</creatorcontrib><creatorcontrib>Valle, Marcos Eduardo</creatorcontrib><title>A broad class of discrete-time hypercomplex-valued Hopfield neural networks</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>In this paper, we address the stability of a broad class of discrete-time hypercomplex-valued Hopfield-type neural networks. To ensure the neural networks belonging to this class always settle down at a stationary state, we introduce novel hypercomplex number systems referred to as real-part associative hypercomplex number systems. Real-part associative hypercomplex number systems generalize the well-known Cayley–Dickson algebras and real Clifford algebras and include the systems of real numbers, complex numbers, dual numbers, hyperbolic numbers, quaternions, tessarines, and octonions as particular instances. Apart from the novel hypercomplex number systems, we introduce a family of hypercomplex-valued activation functions called B-projection functions. Broadly speaking, a B-projection function projects the activation potential onto the set of all possible states of a hypercomplex-valued neuron. Using the theory presented in this paper, we confirm the stability analysis of several discrete-time hypercomplex-valued Hopfield-type neural networks from the literature. Moreover, we introduce and provide the stability analysis of a general class of Hopfield-type neural networks on Cayley–Dickson algebras. •New hypercomplex number systems and a broad class of activation functions.•Stability analysis of discrete-time hypercomplex-valued Hopfield neural networks.•Hopfield-type neural networks on Cayley–Dickson and Clifford algebras.•Possible applications for multidimensional data processing.</description><subject>Cayley–Dickson algebra</subject><subject>Clifford algebra</subject><subject>Hopfield neural network</subject><subject>Hypercomplex-valued neural network</subject><subject>Neural Networks, Computer</subject><subject>Stability analysis</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ULFOwzAUtBCIlsIfIJSRJeHZcZxkQaoQUEQlFpgtx34RKUkd7KTQv8dVCyPSSbfcvbt3hFxSSChQcbNK1jiucUgY0DKBAA5HZEqLvIxZXrBjMoWiTGMBBUzImfcrABAFT0_JJKUizwTLp-R5HlXOKhPpVnkf2ToyjdcOB4yHpsPofduj07brW_yON6od0UQL29cNtiYKBZxqAw1f1n34c3JSq9bjxYFn5O3h_vVuES9fHp_u5stYp4INsQLOoVYpZwVCxqs6F3lV0aKoMsoZFwryPKMCUSgDUDHEtCwx01iVO4NJZ-R6f7d39nNEP8gudMa2VWu0o5cspVRkWcZFkPK9VDvrvcNa9q7plNtKCnI3o1zJ_YxyN6OEAA7BdnVIGKsOzZ_pd7cguN0LMPy5adBJrxtcazSNQz1IY5v_E34AbGSFrw</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>de Castro, Fidelis Zanetti</creator><creator>Valle, Marcos Eduardo</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4026-5110</orcidid></search><sort><creationdate>202002</creationdate><title>A broad class of discrete-time hypercomplex-valued Hopfield neural networks</title><author>de Castro, Fidelis Zanetti ; Valle, Marcos Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-a0440fa3428e054bf767bb188b514246a077516ee6ad00b2ee399e5ceb98e05d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cayley–Dickson algebra</topic><topic>Clifford algebra</topic><topic>Hopfield neural network</topic><topic>Hypercomplex-valued neural network</topic><topic>Neural Networks, Computer</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Castro, Fidelis Zanetti</creatorcontrib><creatorcontrib>Valle, Marcos Eduardo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Castro, Fidelis Zanetti</au><au>Valle, Marcos Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A broad class of discrete-time hypercomplex-valued Hopfield neural networks</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2020-02</date><risdate>2020</risdate><volume>122</volume><spage>54</spage><epage>67</epage><pages>54-67</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>In this paper, we address the stability of a broad class of discrete-time hypercomplex-valued Hopfield-type neural networks. To ensure the neural networks belonging to this class always settle down at a stationary state, we introduce novel hypercomplex number systems referred to as real-part associative hypercomplex number systems. Real-part associative hypercomplex number systems generalize the well-known Cayley–Dickson algebras and real Clifford algebras and include the systems of real numbers, complex numbers, dual numbers, hyperbolic numbers, quaternions, tessarines, and octonions as particular instances. Apart from the novel hypercomplex number systems, we introduce a family of hypercomplex-valued activation functions called B-projection functions. Broadly speaking, a B-projection function projects the activation potential onto the set of all possible states of a hypercomplex-valued neuron. Using the theory presented in this paper, we confirm the stability analysis of several discrete-time hypercomplex-valued Hopfield-type neural networks from the literature. Moreover, we introduce and provide the stability analysis of a general class of Hopfield-type neural networks on Cayley–Dickson algebras. •New hypercomplex number systems and a broad class of activation functions.•Stability analysis of discrete-time hypercomplex-valued Hopfield neural networks.•Hopfield-type neural networks on Cayley–Dickson and Clifford algebras.•Possible applications for multidimensional data processing.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>31675627</pmid><doi>10.1016/j.neunet.2019.09.040</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4026-5110</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2020-02, Vol.122, p.54-67
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_2311655546
source MEDLINE; Elsevier ScienceDirect Journals
subjects Cayley–Dickson algebra
Clifford algebra
Hopfield neural network
Hypercomplex-valued neural network
Neural Networks, Computer
Stability analysis
title A broad class of discrete-time hypercomplex-valued Hopfield neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20broad%20class%20of%20discrete-time%20hypercomplex-valued%20Hopfield%20neural%20networks&rft.jtitle=Neural%20networks&rft.au=de%20Castro,%20Fidelis%20Zanetti&rft.date=2020-02&rft.volume=122&rft.spage=54&rft.epage=67&rft.pages=54-67&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2019.09.040&rft_dat=%3Cproquest_cross%3E2311655546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311655546&rft_id=info:pmid/31675627&rft_els_id=S0893608019303223&rfr_iscdi=true