Bayesian inference for modal identification in ducts with a shear flow

An in-duct modal decomposition technique is described. The basis for the technique is to consider the decomposition as an inference problem. Using transfer function measurements at the duct walls, a Bayesian inference is conducted to evaluate the acoustic modal coefficients in the presence of uncert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2019-10, Vol.146 (4), p.2645-2654
Hauptverfasser: Roncen, Rémi, Méry, Fabien, Piot, Estelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2654
container_issue 4
container_start_page 2645
container_title The Journal of the Acoustical Society of America
container_volume 146
creator Roncen, Rémi
Méry, Fabien
Piot, Estelle
description An in-duct modal decomposition technique is described. The basis for the technique is to consider the decomposition as an inference problem. Using transfer function measurements at the duct walls, a Bayesian inference is conducted to evaluate the acoustic modal coefficients in the presence of uncertainties. These uncertainties encompass model errors, microphone measurements error, and uncertainty on the flow profile. The formalism of the direct problem of modal decomposition in a ducted shear flow is first developed. The case of a circular cross-section duct is then treated without and with a flow, using synthetic noisy signals for the inference problem.
doi_str_mv 10.1121/1.5130195
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2311640535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311640535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-321e610cac243d68a238fe2a569a0e2355f9f4f9699b9ed3749a3f1266b320ba3</originalsourceid><addsrcrecordid>eNp90EtPAyEUhmFiNFovC_-AYakmUzkw0GFZjbekiRtdk1MGUsx0qDDV9N87tVVXuiKHPHkXHyGnwIYAHK5gKEEw0HKHDEByVlSSl7tkwBiDotRKHZDDnF_7U1ZC75MDAWoEWlUDcneNK5cDtjS03iXXWkd9THQea2xoqF3bBR8sdiGuCa2Xtsv0I3QzijTPHCbqm_hxTPY8NtmdbN8j8nJ3-3zzUEye7h9vxpPClrzsCsHBKWAWLS9FrSrkovKOo1QameNCSq996bXSeqpdLUalRuGBKzUVnE1RHJGLTXeGjVmkMMe0MhGDeRhPzPqPcRB6JKp36O35xi5SfFu63Jl5yNY1DbYuLrPhAkCVTAr5m7Up5pyc_2kDM-uJDZjtxL0922aX07mrf-T3pj243IBsQ_c13L-1P_F7TL_QLGovPgEfj4-s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311640535</pqid></control><display><type>article</type><title>Bayesian inference for modal identification in ducts with a shear flow</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Roncen, Rémi ; Méry, Fabien ; Piot, Estelle</creator><creatorcontrib>Roncen, Rémi ; Méry, Fabien ; Piot, Estelle</creatorcontrib><description>An in-duct modal decomposition technique is described. The basis for the technique is to consider the decomposition as an inference problem. Using transfer function measurements at the duct walls, a Bayesian inference is conducted to evaluate the acoustic modal coefficients in the presence of uncertainties. These uncertainties encompass model errors, microphone measurements error, and uncertainty on the flow profile. The formalism of the direct problem of modal decomposition in a ducted shear flow is first developed. The case of a circular cross-section duct is then treated without and with a flow, using synthetic noisy signals for the inference problem.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.5130195</identifier><identifier>PMID: 31671968</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States: Acoustical Society of America</publisher><subject>Acoustics ; Engineering Sciences</subject><ispartof>The Journal of the Acoustical Society of America, 2019-10, Vol.146 (4), p.2645-2654</ispartof><rights>Acoustical Society of America</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-321e610cac243d68a238fe2a569a0e2355f9f4f9699b9ed3749a3f1266b320ba3</citedby><cites>FETCH-LOGICAL-c424t-321e610cac243d68a238fe2a569a0e2355f9f4f9699b9ed3749a3f1266b320ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.5130195$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,230,314,780,784,794,885,1565,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31671968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02139738$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Roncen, Rémi</creatorcontrib><creatorcontrib>Méry, Fabien</creatorcontrib><creatorcontrib>Piot, Estelle</creatorcontrib><title>Bayesian inference for modal identification in ducts with a shear flow</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>An in-duct modal decomposition technique is described. The basis for the technique is to consider the decomposition as an inference problem. Using transfer function measurements at the duct walls, a Bayesian inference is conducted to evaluate the acoustic modal coefficients in the presence of uncertainties. These uncertainties encompass model errors, microphone measurements error, and uncertainty on the flow profile. The formalism of the direct problem of modal decomposition in a ducted shear flow is first developed. The case of a circular cross-section duct is then treated without and with a flow, using synthetic noisy signals for the inference problem.</description><subject>Acoustics</subject><subject>Engineering Sciences</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90EtPAyEUhmFiNFovC_-AYakmUzkw0GFZjbekiRtdk1MGUsx0qDDV9N87tVVXuiKHPHkXHyGnwIYAHK5gKEEw0HKHDEByVlSSl7tkwBiDotRKHZDDnF_7U1ZC75MDAWoEWlUDcneNK5cDtjS03iXXWkd9THQea2xoqF3bBR8sdiGuCa2Xtsv0I3QzijTPHCbqm_hxTPY8NtmdbN8j8nJ3-3zzUEye7h9vxpPClrzsCsHBKWAWLS9FrSrkovKOo1QameNCSq996bXSeqpdLUalRuGBKzUVnE1RHJGLTXeGjVmkMMe0MhGDeRhPzPqPcRB6JKp36O35xi5SfFu63Jl5yNY1DbYuLrPhAkCVTAr5m7Up5pyc_2kDM-uJDZjtxL0922aX07mrf-T3pj243IBsQ_c13L-1P_F7TL_QLGovPgEfj4-s</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Roncen, Rémi</creator><creator>Méry, Fabien</creator><creator>Piot, Estelle</creator><general>Acoustical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201910</creationdate><title>Bayesian inference for modal identification in ducts with a shear flow</title><author>Roncen, Rémi ; Méry, Fabien ; Piot, Estelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-321e610cac243d68a238fe2a569a0e2355f9f4f9699b9ed3749a3f1266b320ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustics</topic><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roncen, Rémi</creatorcontrib><creatorcontrib>Méry, Fabien</creatorcontrib><creatorcontrib>Piot, Estelle</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roncen, Rémi</au><au>Méry, Fabien</au><au>Piot, Estelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference for modal identification in ducts with a shear flow</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2019-10</date><risdate>2019</risdate><volume>146</volume><issue>4</issue><spage>2645</spage><epage>2654</epage><pages>2645-2654</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>An in-duct modal decomposition technique is described. The basis for the technique is to consider the decomposition as an inference problem. Using transfer function measurements at the duct walls, a Bayesian inference is conducted to evaluate the acoustic modal coefficients in the presence of uncertainties. These uncertainties encompass model errors, microphone measurements error, and uncertainty on the flow profile. The formalism of the direct problem of modal decomposition in a ducted shear flow is first developed. The case of a circular cross-section duct is then treated without and with a flow, using synthetic noisy signals for the inference problem.</abstract><cop>United States</cop><pub>Acoustical Society of America</pub><pmid>31671968</pmid><doi>10.1121/1.5130195</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2019-10, Vol.146 (4), p.2645-2654
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_2311640535
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
subjects Acoustics
Engineering Sciences
title Bayesian inference for modal identification in ducts with a shear flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20for%20modal%20identification%20in%20ducts%20with%20a%20shear%20flow&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Roncen,%20R%C3%A9mi&rft.date=2019-10&rft.volume=146&rft.issue=4&rft.spage=2645&rft.epage=2654&rft.pages=2645-2654&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.5130195&rft_dat=%3Cproquest_scita%3E2311640535%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311640535&rft_id=info:pmid/31671968&rfr_iscdi=true