Bayesian inference for modal identification in ducts with a shear flow
An in-duct modal decomposition technique is described. The basis for the technique is to consider the decomposition as an inference problem. Using transfer function measurements at the duct walls, a Bayesian inference is conducted to evaluate the acoustic modal coefficients in the presence of uncert...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2019-10, Vol.146 (4), p.2645-2654 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2654 |
---|---|
container_issue | 4 |
container_start_page | 2645 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 146 |
creator | Roncen, Rémi Méry, Fabien Piot, Estelle |
description | An in-duct modal decomposition technique is described. The basis for the technique is to consider the decomposition as an inference problem. Using transfer function measurements at the duct walls, a Bayesian inference is conducted to evaluate the acoustic modal coefficients in the presence of uncertainties. These uncertainties encompass model errors, microphone measurements error, and uncertainty on the flow profile. The formalism of the direct problem of modal decomposition in a ducted shear flow is first developed. The case of a circular cross-section duct is then treated without and with a flow, using synthetic noisy signals for the inference problem. |
doi_str_mv | 10.1121/1.5130195 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2311640535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311640535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-321e610cac243d68a238fe2a569a0e2355f9f4f9699b9ed3749a3f1266b320ba3</originalsourceid><addsrcrecordid>eNp90EtPAyEUhmFiNFovC_-AYakmUzkw0GFZjbekiRtdk1MGUsx0qDDV9N87tVVXuiKHPHkXHyGnwIYAHK5gKEEw0HKHDEByVlSSl7tkwBiDotRKHZDDnF_7U1ZC75MDAWoEWlUDcneNK5cDtjS03iXXWkd9THQea2xoqF3bBR8sdiGuCa2Xtsv0I3QzijTPHCbqm_hxTPY8NtmdbN8j8nJ3-3zzUEye7h9vxpPClrzsCsHBKWAWLS9FrSrkovKOo1QameNCSq996bXSeqpdLUalRuGBKzUVnE1RHJGLTXeGjVmkMMe0MhGDeRhPzPqPcRB6JKp36O35xi5SfFu63Jl5yNY1DbYuLrPhAkCVTAr5m7Up5pyc_2kDM-uJDZjtxL0922aX07mrf-T3pj243IBsQ_c13L-1P_F7TL_QLGovPgEfj4-s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311640535</pqid></control><display><type>article</type><title>Bayesian inference for modal identification in ducts with a shear flow</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Roncen, Rémi ; Méry, Fabien ; Piot, Estelle</creator><creatorcontrib>Roncen, Rémi ; Méry, Fabien ; Piot, Estelle</creatorcontrib><description>An in-duct modal decomposition technique is described. The basis for the technique is to consider the decomposition as an inference problem. Using transfer function measurements at the duct walls, a Bayesian inference is conducted to evaluate the acoustic modal coefficients in the presence of uncertainties. These uncertainties encompass model errors, microphone measurements error, and uncertainty on the flow profile. The formalism of the direct problem of modal decomposition in a ducted shear flow is first developed. The case of a circular cross-section duct is then treated without and with a flow, using synthetic noisy signals for the inference problem.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.5130195</identifier><identifier>PMID: 31671968</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States: Acoustical Society of America</publisher><subject>Acoustics ; Engineering Sciences</subject><ispartof>The Journal of the Acoustical Society of America, 2019-10, Vol.146 (4), p.2645-2654</ispartof><rights>Acoustical Society of America</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-321e610cac243d68a238fe2a569a0e2355f9f4f9699b9ed3749a3f1266b320ba3</citedby><cites>FETCH-LOGICAL-c424t-321e610cac243d68a238fe2a569a0e2355f9f4f9699b9ed3749a3f1266b320ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.5130195$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,230,314,780,784,794,885,1565,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31671968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02139738$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Roncen, Rémi</creatorcontrib><creatorcontrib>Méry, Fabien</creatorcontrib><creatorcontrib>Piot, Estelle</creatorcontrib><title>Bayesian inference for modal identification in ducts with a shear flow</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>An in-duct modal decomposition technique is described. The basis for the technique is to consider the decomposition as an inference problem. Using transfer function measurements at the duct walls, a Bayesian inference is conducted to evaluate the acoustic modal coefficients in the presence of uncertainties. These uncertainties encompass model errors, microphone measurements error, and uncertainty on the flow profile. The formalism of the direct problem of modal decomposition in a ducted shear flow is first developed. The case of a circular cross-section duct is then treated without and with a flow, using synthetic noisy signals for the inference problem.</description><subject>Acoustics</subject><subject>Engineering Sciences</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90EtPAyEUhmFiNFovC_-AYakmUzkw0GFZjbekiRtdk1MGUsx0qDDV9N87tVVXuiKHPHkXHyGnwIYAHK5gKEEw0HKHDEByVlSSl7tkwBiDotRKHZDDnF_7U1ZC75MDAWoEWlUDcneNK5cDtjS03iXXWkd9THQea2xoqF3bBR8sdiGuCa2Xtsv0I3QzijTPHCbqm_hxTPY8NtmdbN8j8nJ3-3zzUEye7h9vxpPClrzsCsHBKWAWLS9FrSrkovKOo1QameNCSq996bXSeqpdLUalRuGBKzUVnE1RHJGLTXeGjVmkMMe0MhGDeRhPzPqPcRB6JKp36O35xi5SfFu63Jl5yNY1DbYuLrPhAkCVTAr5m7Up5pyc_2kDM-uJDZjtxL0922aX07mrf-T3pj243IBsQ_c13L-1P_F7TL_QLGovPgEfj4-s</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Roncen, Rémi</creator><creator>Méry, Fabien</creator><creator>Piot, Estelle</creator><general>Acoustical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201910</creationdate><title>Bayesian inference for modal identification in ducts with a shear flow</title><author>Roncen, Rémi ; Méry, Fabien ; Piot, Estelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-321e610cac243d68a238fe2a569a0e2355f9f4f9699b9ed3749a3f1266b320ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustics</topic><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roncen, Rémi</creatorcontrib><creatorcontrib>Méry, Fabien</creatorcontrib><creatorcontrib>Piot, Estelle</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roncen, Rémi</au><au>Méry, Fabien</au><au>Piot, Estelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference for modal identification in ducts with a shear flow</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2019-10</date><risdate>2019</risdate><volume>146</volume><issue>4</issue><spage>2645</spage><epage>2654</epage><pages>2645-2654</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>An in-duct modal decomposition technique is described. The basis for the technique is to consider the decomposition as an inference problem. Using transfer function measurements at the duct walls, a Bayesian inference is conducted to evaluate the acoustic modal coefficients in the presence of uncertainties. These uncertainties encompass model errors, microphone measurements error, and uncertainty on the flow profile. The formalism of the direct problem of modal decomposition in a ducted shear flow is first developed. The case of a circular cross-section duct is then treated without and with a flow, using synthetic noisy signals for the inference problem.</abstract><cop>United States</cop><pub>Acoustical Society of America</pub><pmid>31671968</pmid><doi>10.1121/1.5130195</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2019-10, Vol.146 (4), p.2645-2654 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_2311640535 |
source | AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America |
subjects | Acoustics Engineering Sciences |
title | Bayesian inference for modal identification in ducts with a shear flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20for%20modal%20identification%20in%20ducts%20with%20a%20shear%20flow&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Roncen,%20R%C3%A9mi&rft.date=2019-10&rft.volume=146&rft.issue=4&rft.spage=2645&rft.epage=2654&rft.pages=2645-2654&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.5130195&rft_dat=%3Cproquest_scita%3E2311640535%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311640535&rft_id=info:pmid/31671968&rfr_iscdi=true |