Controllable cell manipulation in a microfluidic pipette-tip design using capacitive coupling of electric fields

Systems designed toward cell manipulation by electric fields are inherently challenged by energy dissipation along the electrode-electrolyte interface. A promising remedy is the introduction of high- k electrode passivation, enabling efficient capacitive coupling of electric fields into biological s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2019-12, Vol.19 (23), p.3997-46
Hauptverfasser: Wimberger, Terje, Peham, Johannes R, Ehmoser, Eva-Kathrin, Wassermann, Klemens J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue 23
container_start_page 3997
container_title Lab on a chip
container_volume 19
creator Wimberger, Terje
Peham, Johannes R
Ehmoser, Eva-Kathrin
Wassermann, Klemens J
description Systems designed toward cell manipulation by electric fields are inherently challenged by energy dissipation along the electrode-electrolyte interface. A promising remedy is the introduction of high- k electrode passivation, enabling efficient capacitive coupling of electric fields into biological samples. We present the implementation of this strategy in a reusable pipette tip design featuring a 10 μl chamber volume for life science applications. Prototype validation and comparison to conductive gold-coated electrodes reveal a consistent and controllable biological effect that significantly increases the reproducibility of lysis events. The system provides precise descriptions of HEK-293 lysis dependency to variables such as field strength, frequency, and conductivity. Over 80% of cells were reversibly electroporated with minimal electrical lysis over a broad range of field settings. Successful transfection requires exponential decay pulses and showcases how modulating capacitive coupling can advance our understanding of fundamental mechanics in the field of electroporation. Capacitive coupling of electric fields diminishes energy dissipation and offers superior control over field parameters, resulting in predictable biological outcomes.
doi_str_mv 10.1039/c9lc00927b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2310713291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310713291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-e217caf591a36f1ed80c6907a55cb99221bc76c29a8401aa14d20faadc43d8393</originalsourceid><addsrcrecordid>eNp90c9rHCEUB3ApCfmxzaX3FksuITCNjrPjeGyHNgks5JKchzf-CAZntOoE8t_H7aZb6CEnRT_voe-L0CdKvlHCxJUUThIiaj5-QCe04awitBMH-73gx-g0pSdC6LppuyN0zGjb8oZ3Jyj0fs7ROwej01hq5_AEsw2Lg2z9jO2MAU9WRm_cYpWVONigc9ZVtgErnezjjJdk50csIYC02T6XPn4JbnvmDdZOyxxLobHaqfQRHRpwSZ-9rSv08OvnfX9Tbe6ub_vvm0o2rM2VrimXYNaCAmsN1aojshWEw3otRyHqmo6St7IW0DWEAtBG1cQAqFKuOibYCl3s-obofy865WGyafs_mLVf0lAzSjhltaCFnv9Hn_wS5_K6rSojI13TFHW5U2UWKUVthhDtBPFloGTY5jD0YtP_yeFHwV_eWi7jpNWe_h18AV93ICa5v_0X5BCUKebze4a9Amu-mUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315460844</pqid></control><display><type>article</type><title>Controllable cell manipulation in a microfluidic pipette-tip design using capacitive coupling of electric fields</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wimberger, Terje ; Peham, Johannes R ; Ehmoser, Eva-Kathrin ; Wassermann, Klemens J</creator><creatorcontrib>Wimberger, Terje ; Peham, Johannes R ; Ehmoser, Eva-Kathrin ; Wassermann, Klemens J</creatorcontrib><description>Systems designed toward cell manipulation by electric fields are inherently challenged by energy dissipation along the electrode-electrolyte interface. A promising remedy is the introduction of high- k electrode passivation, enabling efficient capacitive coupling of electric fields into biological samples. We present the implementation of this strategy in a reusable pipette tip design featuring a 10 μl chamber volume for life science applications. Prototype validation and comparison to conductive gold-coated electrodes reveal a consistent and controllable biological effect that significantly increases the reproducibility of lysis events. The system provides precise descriptions of HEK-293 lysis dependency to variables such as field strength, frequency, and conductivity. Over 80% of cells were reversibly electroporated with minimal electrical lysis over a broad range of field settings. Successful transfection requires exponential decay pulses and showcases how modulating capacitive coupling can advance our understanding of fundamental mechanics in the field of electroporation. Capacitive coupling of electric fields diminishes energy dissipation and offers superior control over field parameters, resulting in predictable biological outcomes.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c9lc00927b</identifier><identifier>PMID: 31667478</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biological effects ; Biological properties ; Coated electrodes ; Coupling ; Dependence ; Electric fields ; Electrical resistivity ; Electrolytic cells ; Electroporation ; Energy dissipation ; Field strength ; Gold coatings ; Microfluidics</subject><ispartof>Lab on a chip, 2019-12, Vol.19 (23), p.3997-46</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-e217caf591a36f1ed80c6907a55cb99221bc76c29a8401aa14d20faadc43d8393</citedby><cites>FETCH-LOGICAL-c436t-e217caf591a36f1ed80c6907a55cb99221bc76c29a8401aa14d20faadc43d8393</cites><orcidid>0000-0001-9719-7548 ; 0000-0002-4177-6927 ; 0000-0001-9201-268X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31667478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wimberger, Terje</creatorcontrib><creatorcontrib>Peham, Johannes R</creatorcontrib><creatorcontrib>Ehmoser, Eva-Kathrin</creatorcontrib><creatorcontrib>Wassermann, Klemens J</creatorcontrib><title>Controllable cell manipulation in a microfluidic pipette-tip design using capacitive coupling of electric fields</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Systems designed toward cell manipulation by electric fields are inherently challenged by energy dissipation along the electrode-electrolyte interface. A promising remedy is the introduction of high- k electrode passivation, enabling efficient capacitive coupling of electric fields into biological samples. We present the implementation of this strategy in a reusable pipette tip design featuring a 10 μl chamber volume for life science applications. Prototype validation and comparison to conductive gold-coated electrodes reveal a consistent and controllable biological effect that significantly increases the reproducibility of lysis events. The system provides precise descriptions of HEK-293 lysis dependency to variables such as field strength, frequency, and conductivity. Over 80% of cells were reversibly electroporated with minimal electrical lysis over a broad range of field settings. Successful transfection requires exponential decay pulses and showcases how modulating capacitive coupling can advance our understanding of fundamental mechanics in the field of electroporation. Capacitive coupling of electric fields diminishes energy dissipation and offers superior control over field parameters, resulting in predictable biological outcomes.</description><subject>Biological effects</subject><subject>Biological properties</subject><subject>Coated electrodes</subject><subject>Coupling</subject><subject>Dependence</subject><subject>Electric fields</subject><subject>Electrical resistivity</subject><subject>Electrolytic cells</subject><subject>Electroporation</subject><subject>Energy dissipation</subject><subject>Field strength</subject><subject>Gold coatings</subject><subject>Microfluidics</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90c9rHCEUB3ApCfmxzaX3FksuITCNjrPjeGyHNgks5JKchzf-CAZntOoE8t_H7aZb6CEnRT_voe-L0CdKvlHCxJUUThIiaj5-QCe04awitBMH-73gx-g0pSdC6LppuyN0zGjb8oZ3Jyj0fs7ROwej01hq5_AEsw2Lg2z9jO2MAU9WRm_cYpWVONigc9ZVtgErnezjjJdk50csIYC02T6XPn4JbnvmDdZOyxxLobHaqfQRHRpwSZ-9rSv08OvnfX9Tbe6ub_vvm0o2rM2VrimXYNaCAmsN1aojshWEw3otRyHqmo6St7IW0DWEAtBG1cQAqFKuOibYCl3s-obofy865WGyafs_mLVf0lAzSjhltaCFnv9Hn_wS5_K6rSojI13TFHW5U2UWKUVthhDtBPFloGTY5jD0YtP_yeFHwV_eWi7jpNWe_h18AV93ICa5v_0X5BCUKebze4a9Amu-mUI</recordid><startdate>20191207</startdate><enddate>20191207</enddate><creator>Wimberger, Terje</creator><creator>Peham, Johannes R</creator><creator>Ehmoser, Eva-Kathrin</creator><creator>Wassermann, Klemens J</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9719-7548</orcidid><orcidid>https://orcid.org/0000-0002-4177-6927</orcidid><orcidid>https://orcid.org/0000-0001-9201-268X</orcidid></search><sort><creationdate>20191207</creationdate><title>Controllable cell manipulation in a microfluidic pipette-tip design using capacitive coupling of electric fields</title><author>Wimberger, Terje ; Peham, Johannes R ; Ehmoser, Eva-Kathrin ; Wassermann, Klemens J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-e217caf591a36f1ed80c6907a55cb99221bc76c29a8401aa14d20faadc43d8393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biological effects</topic><topic>Biological properties</topic><topic>Coated electrodes</topic><topic>Coupling</topic><topic>Dependence</topic><topic>Electric fields</topic><topic>Electrical resistivity</topic><topic>Electrolytic cells</topic><topic>Electroporation</topic><topic>Energy dissipation</topic><topic>Field strength</topic><topic>Gold coatings</topic><topic>Microfluidics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wimberger, Terje</creatorcontrib><creatorcontrib>Peham, Johannes R</creatorcontrib><creatorcontrib>Ehmoser, Eva-Kathrin</creatorcontrib><creatorcontrib>Wassermann, Klemens J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wimberger, Terje</au><au>Peham, Johannes R</au><au>Ehmoser, Eva-Kathrin</au><au>Wassermann, Klemens J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable cell manipulation in a microfluidic pipette-tip design using capacitive coupling of electric fields</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2019-12-07</date><risdate>2019</risdate><volume>19</volume><issue>23</issue><spage>3997</spage><epage>46</epage><pages>3997-46</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Systems designed toward cell manipulation by electric fields are inherently challenged by energy dissipation along the electrode-electrolyte interface. A promising remedy is the introduction of high- k electrode passivation, enabling efficient capacitive coupling of electric fields into biological samples. We present the implementation of this strategy in a reusable pipette tip design featuring a 10 μl chamber volume for life science applications. Prototype validation and comparison to conductive gold-coated electrodes reveal a consistent and controllable biological effect that significantly increases the reproducibility of lysis events. The system provides precise descriptions of HEK-293 lysis dependency to variables such as field strength, frequency, and conductivity. Over 80% of cells were reversibly electroporated with minimal electrical lysis over a broad range of field settings. Successful transfection requires exponential decay pulses and showcases how modulating capacitive coupling can advance our understanding of fundamental mechanics in the field of electroporation. Capacitive coupling of electric fields diminishes energy dissipation and offers superior control over field parameters, resulting in predictable biological outcomes.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31667478</pmid><doi>10.1039/c9lc00927b</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9719-7548</orcidid><orcidid>https://orcid.org/0000-0002-4177-6927</orcidid><orcidid>https://orcid.org/0000-0001-9201-268X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2019-12, Vol.19 (23), p.3997-46
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_2310713291
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Biological effects
Biological properties
Coated electrodes
Coupling
Dependence
Electric fields
Electrical resistivity
Electrolytic cells
Electroporation
Energy dissipation
Field strength
Gold coatings
Microfluidics
title Controllable cell manipulation in a microfluidic pipette-tip design using capacitive coupling of electric fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable%20cell%20manipulation%20in%20a%20microfluidic%20pipette-tip%20design%20using%20capacitive%20coupling%20of%20electric%20fields&rft.jtitle=Lab%20on%20a%20chip&rft.au=Wimberger,%20Terje&rft.date=2019-12-07&rft.volume=19&rft.issue=23&rft.spage=3997&rft.epage=46&rft.pages=3997-46&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c9lc00927b&rft_dat=%3Cproquest_cross%3E2310713291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315460844&rft_id=info:pmid/31667478&rfr_iscdi=true