Superior Thermal Stability of High Energy Density and Power Density in Domain-Engineered Bi0.5Na0.5TiO3–NaTaO3 Relaxor Ferroelectrics

Thermal-stable dielectric capacitors with high energy density and power density have attracted increasing attention in recent years. In this work, (1 – x)­Bi0.5Na0.5TiO3–xNaTaO3 [(1 – x)­BNT–xNT, x = 0–0.30] lead-free relaxor ferroelectric ceramics are developed for capacitor applications. The x = 0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-11, Vol.11 (46), p.43107-43115
Hauptverfasser: Zhou, Xuefan, Qi, He, Yan, Zhongna, Xue, Guoliang, Luo, Hang, Zhang, Dou
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43115
container_issue 46
container_start_page 43107
container_title ACS applied materials & interfaces
container_volume 11
creator Zhou, Xuefan
Qi, He
Yan, Zhongna
Xue, Guoliang
Luo, Hang
Zhang, Dou
description Thermal-stable dielectric capacitors with high energy density and power density have attracted increasing attention in recent years. In this work, (1 – x)­Bi0.5Na0.5TiO3–xNaTaO3 [(1 – x)­BNT–xNT, x = 0–0.30] lead-free relaxor ferroelectric ceramics are developed for capacitor applications. The x = 0.20 ceramic exhibits superior thermal stability of discharged energy density (W D) with a variation of less than 10% in an ultrawide temperature range of −50 to 300 °C, showing a significant advantage compared with the previously reported ceramic systems. The W D reaches 4.21 J/cm3 under 38 kV/mm at room temperature. Besides, a record high of power density (P D ≈ 89.5 MW/cm3) in BNT-based ceramics is also achieved in x = 0.20 ceramic with an excellent temperature insensitivity within 25–160 °C. The x = 0.20 ceramic is indicated to be an ergodic relaxor ferroelectric with coexisted R3c nanodomains and P4bm polar nanoregions at room temperature, greatly inducing large maximum polarization, maintaining low remnant polarization, and thus achieving high W D and P D. Furthermore, the diffuse phase transition from R3c to P4bm phase on heating is considered to be responsible for the superior thermal stability of the high W D and P D. These results imply the large potential of the 0.80BNT–0.20NT ceramic in temperature-stable dielectric capacitor applications.
doi_str_mv 10.1021/acsami.9b13215
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2310666995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310666995</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-4e279d641e64ab6b6296f93bc0ead45228e38917766b44d0b9ed5c024932f8be3</originalsourceid><addsrcrecordid>eNo9kM1OwkAUhRujiYhuXc_SmBTnr0NnqfyICQEjdd3MtLcwpExxpo2yc-cD-IY-iSUQNvfenJycc_MFwS3BPYIpeVCZVxvTk5owSqKzoEMk52FMI3p-ujm_DK68X2MsGMVRJ_hZNFtwpnIoWYHbqBItaqVNaeodqgo0McsVGllwyx0agvV7WdkcvVaf4E6KsWhYbZSx4cgujQVwkKMng3vRTLUjMXP29_07U4maM_QGpfpq-8bgXAUlZLUzmb8OLgpVerg57m7wPh4lg0k4nT-_DB6noaKxrEMOtC9zwQkIrrTQgkpRSKYzDCrnEaUxsFiSfl8IzXmOtYQ8yjDlktEi1sC6wd0hd-uqjwZ8nW6Mz6AslYWq8SllBAshpIxa6_3B2oJN11XjbPtYSnC6p50eaKdH2uwfgSB0iA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310666995</pqid></control><display><type>article</type><title>Superior Thermal Stability of High Energy Density and Power Density in Domain-Engineered Bi0.5Na0.5TiO3–NaTaO3 Relaxor Ferroelectrics</title><source>American Chemical Society Journals</source><creator>Zhou, Xuefan ; Qi, He ; Yan, Zhongna ; Xue, Guoliang ; Luo, Hang ; Zhang, Dou</creator><creatorcontrib>Zhou, Xuefan ; Qi, He ; Yan, Zhongna ; Xue, Guoliang ; Luo, Hang ; Zhang, Dou</creatorcontrib><description>Thermal-stable dielectric capacitors with high energy density and power density have attracted increasing attention in recent years. In this work, (1 – x)­Bi0.5Na0.5TiO3–xNaTaO3 [(1 – x)­BNT–xNT, x = 0–0.30] lead-free relaxor ferroelectric ceramics are developed for capacitor applications. The x = 0.20 ceramic exhibits superior thermal stability of discharged energy density (W D) with a variation of less than 10% in an ultrawide temperature range of −50 to 300 °C, showing a significant advantage compared with the previously reported ceramic systems. The W D reaches 4.21 J/cm3 under 38 kV/mm at room temperature. Besides, a record high of power density (P D ≈ 89.5 MW/cm3) in BNT-based ceramics is also achieved in x = 0.20 ceramic with an excellent temperature insensitivity within 25–160 °C. The x = 0.20 ceramic is indicated to be an ergodic relaxor ferroelectric with coexisted R3c nanodomains and P4bm polar nanoregions at room temperature, greatly inducing large maximum polarization, maintaining low remnant polarization, and thus achieving high W D and P D. Furthermore, the diffuse phase transition from R3c to P4bm phase on heating is considered to be responsible for the superior thermal stability of the high W D and P D. These results imply the large potential of the 0.80BNT–0.20NT ceramic in temperature-stable dielectric capacitor applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b13215</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-11, Vol.11 (46), p.43107-43115</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3094-3574 ; 0000-0001-8555-2784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b13215$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b13215$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Zhou, Xuefan</creatorcontrib><creatorcontrib>Qi, He</creatorcontrib><creatorcontrib>Yan, Zhongna</creatorcontrib><creatorcontrib>Xue, Guoliang</creatorcontrib><creatorcontrib>Luo, Hang</creatorcontrib><creatorcontrib>Zhang, Dou</creatorcontrib><title>Superior Thermal Stability of High Energy Density and Power Density in Domain-Engineered Bi0.5Na0.5TiO3–NaTaO3 Relaxor Ferroelectrics</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Thermal-stable dielectric capacitors with high energy density and power density have attracted increasing attention in recent years. In this work, (1 – x)­Bi0.5Na0.5TiO3–xNaTaO3 [(1 – x)­BNT–xNT, x = 0–0.30] lead-free relaxor ferroelectric ceramics are developed for capacitor applications. The x = 0.20 ceramic exhibits superior thermal stability of discharged energy density (W D) with a variation of less than 10% in an ultrawide temperature range of −50 to 300 °C, showing a significant advantage compared with the previously reported ceramic systems. The W D reaches 4.21 J/cm3 under 38 kV/mm at room temperature. Besides, a record high of power density (P D ≈ 89.5 MW/cm3) in BNT-based ceramics is also achieved in x = 0.20 ceramic with an excellent temperature insensitivity within 25–160 °C. The x = 0.20 ceramic is indicated to be an ergodic relaxor ferroelectric with coexisted R3c nanodomains and P4bm polar nanoregions at room temperature, greatly inducing large maximum polarization, maintaining low remnant polarization, and thus achieving high W D and P D. Furthermore, the diffuse phase transition from R3c to P4bm phase on heating is considered to be responsible for the superior thermal stability of the high W D and P D. These results imply the large potential of the 0.80BNT–0.20NT ceramic in temperature-stable dielectric capacitor applications.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwkAUhRujiYhuXc_SmBTnr0NnqfyICQEjdd3MtLcwpExxpo2yc-cD-IY-iSUQNvfenJycc_MFwS3BPYIpeVCZVxvTk5owSqKzoEMk52FMI3p-ujm_DK68X2MsGMVRJ_hZNFtwpnIoWYHbqBItaqVNaeodqgo0McsVGllwyx0agvV7WdkcvVaf4E6KsWhYbZSx4cgujQVwkKMng3vRTLUjMXP29_07U4maM_QGpfpq-8bgXAUlZLUzmb8OLgpVerg57m7wPh4lg0k4nT-_DB6noaKxrEMOtC9zwQkIrrTQgkpRSKYzDCrnEaUxsFiSfl8IzXmOtYQ8yjDlktEi1sC6wd0hd-uqjwZ8nW6Mz6AslYWq8SllBAshpIxa6_3B2oJN11XjbPtYSnC6p50eaKdH2uwfgSB0iA</recordid><startdate>20191120</startdate><enddate>20191120</enddate><creator>Zhou, Xuefan</creator><creator>Qi, He</creator><creator>Yan, Zhongna</creator><creator>Xue, Guoliang</creator><creator>Luo, Hang</creator><creator>Zhang, Dou</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3094-3574</orcidid><orcidid>https://orcid.org/0000-0001-8555-2784</orcidid></search><sort><creationdate>20191120</creationdate><title>Superior Thermal Stability of High Energy Density and Power Density in Domain-Engineered Bi0.5Na0.5TiO3–NaTaO3 Relaxor Ferroelectrics</title><author>Zhou, Xuefan ; Qi, He ; Yan, Zhongna ; Xue, Guoliang ; Luo, Hang ; Zhang, Dou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-4e279d641e64ab6b6296f93bc0ead45228e38917766b44d0b9ed5c024932f8be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xuefan</creatorcontrib><creatorcontrib>Qi, He</creatorcontrib><creatorcontrib>Yan, Zhongna</creatorcontrib><creatorcontrib>Xue, Guoliang</creatorcontrib><creatorcontrib>Luo, Hang</creatorcontrib><creatorcontrib>Zhang, Dou</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xuefan</au><au>Qi, He</au><au>Yan, Zhongna</au><au>Xue, Guoliang</au><au>Luo, Hang</au><au>Zhang, Dou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior Thermal Stability of High Energy Density and Power Density in Domain-Engineered Bi0.5Na0.5TiO3–NaTaO3 Relaxor Ferroelectrics</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-11-20</date><risdate>2019</risdate><volume>11</volume><issue>46</issue><spage>43107</spage><epage>43115</epage><pages>43107-43115</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Thermal-stable dielectric capacitors with high energy density and power density have attracted increasing attention in recent years. In this work, (1 – x)­Bi0.5Na0.5TiO3–xNaTaO3 [(1 – x)­BNT–xNT, x = 0–0.30] lead-free relaxor ferroelectric ceramics are developed for capacitor applications. The x = 0.20 ceramic exhibits superior thermal stability of discharged energy density (W D) with a variation of less than 10% in an ultrawide temperature range of −50 to 300 °C, showing a significant advantage compared with the previously reported ceramic systems. The W D reaches 4.21 J/cm3 under 38 kV/mm at room temperature. Besides, a record high of power density (P D ≈ 89.5 MW/cm3) in BNT-based ceramics is also achieved in x = 0.20 ceramic with an excellent temperature insensitivity within 25–160 °C. The x = 0.20 ceramic is indicated to be an ergodic relaxor ferroelectric with coexisted R3c nanodomains and P4bm polar nanoregions at room temperature, greatly inducing large maximum polarization, maintaining low remnant polarization, and thus achieving high W D and P D. Furthermore, the diffuse phase transition from R3c to P4bm phase on heating is considered to be responsible for the superior thermal stability of the high W D and P D. These results imply the large potential of the 0.80BNT–0.20NT ceramic in temperature-stable dielectric capacitor applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.9b13215</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3094-3574</orcidid><orcidid>https://orcid.org/0000-0001-8555-2784</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-11, Vol.11 (46), p.43107-43115
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2310666995
source American Chemical Society Journals
title Superior Thermal Stability of High Energy Density and Power Density in Domain-Engineered Bi0.5Na0.5TiO3–NaTaO3 Relaxor Ferroelectrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20Thermal%20Stability%20of%20High%20Energy%20Density%20and%20Power%20Density%20in%20Domain-Engineered%20Bi0.5Na0.5TiO3%E2%80%93NaTaO3%20Relaxor%20Ferroelectrics&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhou,%20Xuefan&rft.date=2019-11-20&rft.volume=11&rft.issue=46&rft.spage=43107&rft.epage=43115&rft.pages=43107-43115&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b13215&rft_dat=%3Cproquest_acs_j%3E2310666995%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310666995&rft_id=info:pmid/&rfr_iscdi=true