Two-Dimensional Material Tunnel Barrier for Josephson Junctions and Superconducting Qubits

Quantum computing based on superconducting qubits requires the understanding and control of the materials, device architecture, and operation. However, the materials for the central circuit element, the Josephson junction, have mostly been focused on using the AlO x tunnel barrier. Here, we demonstr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2019-11, Vol.19 (11), p.8287-8293
Hauptverfasser: Lee, Kan-Heng, Chakram, Srivatsan, Kim, Shi En, Mujid, Fauzia, Ray, Ariana, Gao, Hui, Park, Chibeom, Zhong, Yu, Muller, David A, Schuster, David I, Park, Jiwoong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8293
container_issue 11
container_start_page 8287
container_title Nano letters
container_volume 19
creator Lee, Kan-Heng
Chakram, Srivatsan
Kim, Shi En
Mujid, Fauzia
Ray, Ariana
Gao, Hui
Park, Chibeom
Zhong, Yu
Muller, David A
Schuster, David I
Park, Jiwoong
description Quantum computing based on superconducting qubits requires the understanding and control of the materials, device architecture, and operation. However, the materials for the central circuit element, the Josephson junction, have mostly been focused on using the AlO x tunnel barrier. Here, we demonstrate Josephson junctions and superconducting qubits employing two-dimensional materials as the tunnel barrier. We batch-fabricate and design the critical Josephson current of these devices via layer-by-layer stacking N layers of MoS2 on the large scale. Based on such junctions, MoS2 transmon qubits are engineered and characterized in a bulk superconducting microwave resonator for the first time. Our work allows Josephson junctions to access the diverse material properties of two-dimensional materials that include a wide range of electrical and magnetic properties, which can be used to study the effects of different material properties in superconducting qubits and to engineer novel quantum circuit elements in the future.
doi_str_mv 10.1021/acs.nanolett.9b03886
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2310666992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310666992</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-31e73497f3929ee761f0baffd9401528fad56a96cbaa1e8737f58e88d0c3b5493</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwh5ySbFjhPHXkJ5VkUIUTZsIicZQ6rEDnYsxN-Tqo8lq7kanTsjHYTOKZlSEtMrVfqpUcY20PdTWRAmBD9AY5oyEnEp48N9FskInXi_IoRIlpJjNGKUc8ppOkYfyx8b3dYtGF9boxr8rHpw9RCWwRho8I1yrgaHtXV4bj10X94aPA-m7IeCx8pU-C104EprqjAszSd-DUXd-1N0pFXj4Ww7J-j9_m45e4wWLw9Ps-tFpBKa9BGjkLFEZprJWAJknGpSKK0rmRCaxkKrKuVK8rJQioLIWKZTAUJUpGRFmkg2QZebu52z3wF8n7e1L6FplAEbfB4zSjhfKxnQZIOWznrvQOedq1vlfnNK8rXVfLCa76zmW6tD7WL7IRQtVPvSTuMAkA2wrq9scINJ___NP60KiIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310666992</pqid></control><display><type>article</type><title>Two-Dimensional Material Tunnel Barrier for Josephson Junctions and Superconducting Qubits</title><source>American Chemical Society Journals</source><creator>Lee, Kan-Heng ; Chakram, Srivatsan ; Kim, Shi En ; Mujid, Fauzia ; Ray, Ariana ; Gao, Hui ; Park, Chibeom ; Zhong, Yu ; Muller, David A ; Schuster, David I ; Park, Jiwoong</creator><creatorcontrib>Lee, Kan-Heng ; Chakram, Srivatsan ; Kim, Shi En ; Mujid, Fauzia ; Ray, Ariana ; Gao, Hui ; Park, Chibeom ; Zhong, Yu ; Muller, David A ; Schuster, David I ; Park, Jiwoong</creatorcontrib><description>Quantum computing based on superconducting qubits requires the understanding and control of the materials, device architecture, and operation. However, the materials for the central circuit element, the Josephson junction, have mostly been focused on using the AlO x tunnel barrier. Here, we demonstrate Josephson junctions and superconducting qubits employing two-dimensional materials as the tunnel barrier. We batch-fabricate and design the critical Josephson current of these devices via layer-by-layer stacking N layers of MoS2 on the large scale. Based on such junctions, MoS2 transmon qubits are engineered and characterized in a bulk superconducting microwave resonator for the first time. Our work allows Josephson junctions to access the diverse material properties of two-dimensional materials that include a wide range of electrical and magnetic properties, which can be used to study the effects of different material properties in superconducting qubits and to engineer novel quantum circuit elements in the future.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b03886</identifier><identifier>PMID: 31661615</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2019-11, Vol.19 (11), p.8287-8293</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-31e73497f3929ee761f0baffd9401528fad56a96cbaa1e8737f58e88d0c3b5493</citedby><cites>FETCH-LOGICAL-a414t-31e73497f3929ee761f0baffd9401528fad56a96cbaa1e8737f58e88d0c3b5493</cites><orcidid>0000-0001-9557-5592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.9b03886$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.9b03886$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31661615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Kan-Heng</creatorcontrib><creatorcontrib>Chakram, Srivatsan</creatorcontrib><creatorcontrib>Kim, Shi En</creatorcontrib><creatorcontrib>Mujid, Fauzia</creatorcontrib><creatorcontrib>Ray, Ariana</creatorcontrib><creatorcontrib>Gao, Hui</creatorcontrib><creatorcontrib>Park, Chibeom</creatorcontrib><creatorcontrib>Zhong, Yu</creatorcontrib><creatorcontrib>Muller, David A</creatorcontrib><creatorcontrib>Schuster, David I</creatorcontrib><creatorcontrib>Park, Jiwoong</creatorcontrib><title>Two-Dimensional Material Tunnel Barrier for Josephson Junctions and Superconducting Qubits</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Quantum computing based on superconducting qubits requires the understanding and control of the materials, device architecture, and operation. However, the materials for the central circuit element, the Josephson junction, have mostly been focused on using the AlO x tunnel barrier. Here, we demonstrate Josephson junctions and superconducting qubits employing two-dimensional materials as the tunnel barrier. We batch-fabricate and design the critical Josephson current of these devices via layer-by-layer stacking N layers of MoS2 on the large scale. Based on such junctions, MoS2 transmon qubits are engineered and characterized in a bulk superconducting microwave resonator for the first time. Our work allows Josephson junctions to access the diverse material properties of two-dimensional materials that include a wide range of electrical and magnetic properties, which can be used to study the effects of different material properties in superconducting qubits and to engineer novel quantum circuit elements in the future.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBwh5ySbFjhPHXkJ5VkUIUTZsIicZQ6rEDnYsxN-Tqo8lq7kanTsjHYTOKZlSEtMrVfqpUcY20PdTWRAmBD9AY5oyEnEp48N9FskInXi_IoRIlpJjNGKUc8ppOkYfyx8b3dYtGF9boxr8rHpw9RCWwRho8I1yrgaHtXV4bj10X94aPA-m7IeCx8pU-C104EprqjAszSd-DUXd-1N0pFXj4Ww7J-j9_m45e4wWLw9Ps-tFpBKa9BGjkLFEZprJWAJknGpSKK0rmRCaxkKrKuVK8rJQioLIWKZTAUJUpGRFmkg2QZebu52z3wF8n7e1L6FplAEbfB4zSjhfKxnQZIOWznrvQOedq1vlfnNK8rXVfLCa76zmW6tD7WL7IRQtVPvSTuMAkA2wrq9scINJ___NP60KiIQ</recordid><startdate>20191113</startdate><enddate>20191113</enddate><creator>Lee, Kan-Heng</creator><creator>Chakram, Srivatsan</creator><creator>Kim, Shi En</creator><creator>Mujid, Fauzia</creator><creator>Ray, Ariana</creator><creator>Gao, Hui</creator><creator>Park, Chibeom</creator><creator>Zhong, Yu</creator><creator>Muller, David A</creator><creator>Schuster, David I</creator><creator>Park, Jiwoong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9557-5592</orcidid></search><sort><creationdate>20191113</creationdate><title>Two-Dimensional Material Tunnel Barrier for Josephson Junctions and Superconducting Qubits</title><author>Lee, Kan-Heng ; Chakram, Srivatsan ; Kim, Shi En ; Mujid, Fauzia ; Ray, Ariana ; Gao, Hui ; Park, Chibeom ; Zhong, Yu ; Muller, David A ; Schuster, David I ; Park, Jiwoong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-31e73497f3929ee761f0baffd9401528fad56a96cbaa1e8737f58e88d0c3b5493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kan-Heng</creatorcontrib><creatorcontrib>Chakram, Srivatsan</creatorcontrib><creatorcontrib>Kim, Shi En</creatorcontrib><creatorcontrib>Mujid, Fauzia</creatorcontrib><creatorcontrib>Ray, Ariana</creatorcontrib><creatorcontrib>Gao, Hui</creatorcontrib><creatorcontrib>Park, Chibeom</creatorcontrib><creatorcontrib>Zhong, Yu</creatorcontrib><creatorcontrib>Muller, David A</creatorcontrib><creatorcontrib>Schuster, David I</creatorcontrib><creatorcontrib>Park, Jiwoong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kan-Heng</au><au>Chakram, Srivatsan</au><au>Kim, Shi En</au><au>Mujid, Fauzia</au><au>Ray, Ariana</au><au>Gao, Hui</au><au>Park, Chibeom</au><au>Zhong, Yu</au><au>Muller, David A</au><au>Schuster, David I</au><au>Park, Jiwoong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Material Tunnel Barrier for Josephson Junctions and Superconducting Qubits</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-11-13</date><risdate>2019</risdate><volume>19</volume><issue>11</issue><spage>8287</spage><epage>8293</epage><pages>8287-8293</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Quantum computing based on superconducting qubits requires the understanding and control of the materials, device architecture, and operation. However, the materials for the central circuit element, the Josephson junction, have mostly been focused on using the AlO x tunnel barrier. Here, we demonstrate Josephson junctions and superconducting qubits employing two-dimensional materials as the tunnel barrier. We batch-fabricate and design the critical Josephson current of these devices via layer-by-layer stacking N layers of MoS2 on the large scale. Based on such junctions, MoS2 transmon qubits are engineered and characterized in a bulk superconducting microwave resonator for the first time. Our work allows Josephson junctions to access the diverse material properties of two-dimensional materials that include a wide range of electrical and magnetic properties, which can be used to study the effects of different material properties in superconducting qubits and to engineer novel quantum circuit elements in the future.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31661615</pmid><doi>10.1021/acs.nanolett.9b03886</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9557-5592</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2019-11, Vol.19 (11), p.8287-8293
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2310666992
source American Chemical Society Journals
title Two-Dimensional Material Tunnel Barrier for Josephson Junctions and Superconducting Qubits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A50%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Material%20Tunnel%20Barrier%20for%20Josephson%20Junctions%20and%20Superconducting%20Qubits&rft.jtitle=Nano%20letters&rft.au=Lee,%20Kan-Heng&rft.date=2019-11-13&rft.volume=19&rft.issue=11&rft.spage=8287&rft.epage=8293&rft.pages=8287-8293&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b03886&rft_dat=%3Cproquest_cross%3E2310666992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310666992&rft_id=info:pmid/31661615&rfr_iscdi=true