Biological plasticity rescues target activity in CRISPR knock outs
Gene knock outs (KOs) are efficiently engineered through CRISPR–Cas9-induced frameshift mutations. While the efficiency of DNA editing is readily verified by DNA sequencing, a systematic understanding of the efficiency of protein elimination has been lacking. Here we devised an experimental strategy...
Gespeichert in:
Veröffentlicht in: | Nature methods 2019-11, Vol.16 (11), p.1087-1093 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1093 |
---|---|
container_issue | 11 |
container_start_page | 1087 |
container_title | Nature methods |
container_volume | 16 |
creator | Smits, Arne H. Ziebell, Frederik Joberty, Gerard Zinn, Nico Mueller, William F. Clauder-Münster, Sandra Eberhard, Dirk Fälth Savitski, Maria Grandi, Paola Jakob, Petra Michon, Anne-Marie Sun, Hanice Tessmer, Karen Bürckstümmer, Tilmann Bantscheff, Marcus Steinmetz, Lars M. Drewes, Gerard Huber, Wolfgang |
description | Gene knock outs (KOs) are efficiently engineered through CRISPR–Cas9-induced frameshift mutations. While the efficiency of DNA editing is readily verified by DNA sequencing, a systematic understanding of the efficiency of protein elimination has been lacking. Here we devised an experimental strategy combining RNA sequencing and triple-stage mass spectrometry to characterize 193 genetically verified deletions targeting 136 distinct genes generated by CRISPR-induced frameshifts in HAP1 cells. We observed residual protein expression for about one third of the quantified targets, at variable levels from low to original, and identified two causal mechanisms, translation reinitiation leading to N-terminally truncated target proteins or skipping of the edited exon leading to protein isoforms with internal sequence deletions. Detailed analysis of three truncated targets, BRD4, DNMT1 and NGLY1, revealed partial preservation of protein function. Our results imply that systematic characterization of residual protein expression or function in CRISPR–Cas9-generated KO lines is necessary for phenotype interpretation.
One third of verified gene knock outs with CRISPR still show residual protein expression owing to translation reinitiation or exon skipping. Several proteins are still functional. The authors call for a systematic analysis of protein levels after genome editing. |
doi_str_mv | 10.1038/s41592-019-0614-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2310296457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A604553042</galeid><sourcerecordid>A604553042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-a9a0a0a205ac395d8e876249632f68c3405299bd5107f526d7062db58147e9243</originalsourceid><addsrcrecordid>eNp1kUlLBDEQhYMo7j_AizR48dJaWbtz1MENBMXlHDLp9BDt6YxJWvDfm2ZcUJQ6JFS-96jKQ2gPwxEGWh9HhrkkJWBZgsCs5CtoE3NWlxUGvvp5B4k30FaMTwCUMsLX0QbFgktKxCY6PXW-8zNndFcsOh2TMy69FcFGM9hYJB1mNhXaJPc69l1fTO6u7m_viufem-fCDynuoLVWd9Hufpzb6PH87GFyWV7fXFxNTq5Lw2qSSi015CLAtaGSN7WtK0GYFJS0ojaUASdSThuOoWo5EU0FgjRTXmNWWUkY3UaHS99F8C95uKTmLhrbdbq3foiKUAxECsarjB78Qp_8EPo83UhhyN8D8pua6c4q17c-BW1GU3UigHFOgZFMHf1B5Wrs3Bnf29bl_g8BXgpM8DEG26pFcHMd3hQGNeamlrmpnJsac1M8a_Y_Bh6mc9t8KT6DygBZAjE_9TMbvjf63_UdWpSeHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311010509</pqid></control><display><type>article</type><title>Biological plasticity rescues target activity in CRISPR knock outs</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Smits, Arne H. ; Ziebell, Frederik ; Joberty, Gerard ; Zinn, Nico ; Mueller, William F. ; Clauder-Münster, Sandra ; Eberhard, Dirk ; Fälth Savitski, Maria ; Grandi, Paola ; Jakob, Petra ; Michon, Anne-Marie ; Sun, Hanice ; Tessmer, Karen ; Bürckstümmer, Tilmann ; Bantscheff, Marcus ; Steinmetz, Lars M. ; Drewes, Gerard ; Huber, Wolfgang</creator><creatorcontrib>Smits, Arne H. ; Ziebell, Frederik ; Joberty, Gerard ; Zinn, Nico ; Mueller, William F. ; Clauder-Münster, Sandra ; Eberhard, Dirk ; Fälth Savitski, Maria ; Grandi, Paola ; Jakob, Petra ; Michon, Anne-Marie ; Sun, Hanice ; Tessmer, Karen ; Bürckstümmer, Tilmann ; Bantscheff, Marcus ; Steinmetz, Lars M. ; Drewes, Gerard ; Huber, Wolfgang</creatorcontrib><description>Gene knock outs (KOs) are efficiently engineered through CRISPR–Cas9-induced frameshift mutations. While the efficiency of DNA editing is readily verified by DNA sequencing, a systematic understanding of the efficiency of protein elimination has been lacking. Here we devised an experimental strategy combining RNA sequencing and triple-stage mass spectrometry to characterize 193 genetically verified deletions targeting 136 distinct genes generated by CRISPR-induced frameshifts in HAP1 cells. We observed residual protein expression for about one third of the quantified targets, at variable levels from low to original, and identified two causal mechanisms, translation reinitiation leading to N-terminally truncated target proteins or skipping of the edited exon leading to protein isoforms with internal sequence deletions. Detailed analysis of three truncated targets, BRD4, DNMT1 and NGLY1, revealed partial preservation of protein function. Our results imply that systematic characterization of residual protein expression or function in CRISPR–Cas9-generated KO lines is necessary for phenotype interpretation.
One third of verified gene knock outs with CRISPR still show residual protein expression owing to translation reinitiation or exon skipping. Several proteins are still functional. The authors call for a systematic analysis of protein levels after genome editing.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-019-0614-5</identifier><identifier>PMID: 31659326</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/1511 ; 631/208/191/2018 ; 631/61/191 ; Amino acid sequence ; Analysis ; Bioinformatics ; Biological activity ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Cell Cycle Proteins - genetics ; CRISPR ; CRISPR-Cas Systems - genetics ; Deoxyribonucleic acid ; DNA ; DNA (Cytosine-5-)-Methyltransferase 1 - genetics ; DNA sequencing ; DNMT1 protein ; Exons ; Frameshift mutation ; Gene Knockout Techniques ; Humans ; Isoforms ; Life Sciences ; Mass spectrometry ; Mass spectroscopy ; Mutation ; Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - genetics ; Phenotypes ; Preservation ; Protein expression ; Proteins ; Proteomics ; Ribonucleic acid ; RNA ; RNA sequencing ; Transcription Factors - genetics</subject><ispartof>Nature methods, 2019-11, Vol.16 (11), p.1087-1093</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-a9a0a0a205ac395d8e876249632f68c3405299bd5107f526d7062db58147e9243</citedby><cites>FETCH-LOGICAL-c482t-a9a0a0a205ac395d8e876249632f68c3405299bd5107f526d7062db58147e9243</cites><orcidid>0000-0002-0474-2218 ; 0000-0002-8343-8977 ; 0000-0002-3390-0027 ; 0000-0001-6662-4105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-019-0614-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-019-0614-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31659326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smits, Arne H.</creatorcontrib><creatorcontrib>Ziebell, Frederik</creatorcontrib><creatorcontrib>Joberty, Gerard</creatorcontrib><creatorcontrib>Zinn, Nico</creatorcontrib><creatorcontrib>Mueller, William F.</creatorcontrib><creatorcontrib>Clauder-Münster, Sandra</creatorcontrib><creatorcontrib>Eberhard, Dirk</creatorcontrib><creatorcontrib>Fälth Savitski, Maria</creatorcontrib><creatorcontrib>Grandi, Paola</creatorcontrib><creatorcontrib>Jakob, Petra</creatorcontrib><creatorcontrib>Michon, Anne-Marie</creatorcontrib><creatorcontrib>Sun, Hanice</creatorcontrib><creatorcontrib>Tessmer, Karen</creatorcontrib><creatorcontrib>Bürckstümmer, Tilmann</creatorcontrib><creatorcontrib>Bantscheff, Marcus</creatorcontrib><creatorcontrib>Steinmetz, Lars M.</creatorcontrib><creatorcontrib>Drewes, Gerard</creatorcontrib><creatorcontrib>Huber, Wolfgang</creatorcontrib><title>Biological plasticity rescues target activity in CRISPR knock outs</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Gene knock outs (KOs) are efficiently engineered through CRISPR–Cas9-induced frameshift mutations. While the efficiency of DNA editing is readily verified by DNA sequencing, a systematic understanding of the efficiency of protein elimination has been lacking. Here we devised an experimental strategy combining RNA sequencing and triple-stage mass spectrometry to characterize 193 genetically verified deletions targeting 136 distinct genes generated by CRISPR-induced frameshifts in HAP1 cells. We observed residual protein expression for about one third of the quantified targets, at variable levels from low to original, and identified two causal mechanisms, translation reinitiation leading to N-terminally truncated target proteins or skipping of the edited exon leading to protein isoforms with internal sequence deletions. Detailed analysis of three truncated targets, BRD4, DNMT1 and NGLY1, revealed partial preservation of protein function. Our results imply that systematic characterization of residual protein expression or function in CRISPR–Cas9-generated KO lines is necessary for phenotype interpretation.
One third of verified gene knock outs with CRISPR still show residual protein expression owing to translation reinitiation or exon skipping. Several proteins are still functional. The authors call for a systematic analysis of protein levels after genome editing.</description><subject>631/1647/1511</subject><subject>631/208/191/2018</subject><subject>631/61/191</subject><subject>Amino acid sequence</subject><subject>Analysis</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Cell Cycle Proteins - genetics</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA (Cytosine-5-)-Methyltransferase 1 - genetics</subject><subject>DNA sequencing</subject><subject>DNMT1 protein</subject><subject>Exons</subject><subject>Frameshift mutation</subject><subject>Gene Knockout Techniques</subject><subject>Humans</subject><subject>Isoforms</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mutation</subject><subject>Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - genetics</subject><subject>Phenotypes</subject><subject>Preservation</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>Transcription Factors - genetics</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUlLBDEQhYMo7j_AizR48dJaWbtz1MENBMXlHDLp9BDt6YxJWvDfm2ZcUJQ6JFS-96jKQ2gPwxEGWh9HhrkkJWBZgsCs5CtoE3NWlxUGvvp5B4k30FaMTwCUMsLX0QbFgktKxCY6PXW-8zNndFcsOh2TMy69FcFGM9hYJB1mNhXaJPc69l1fTO6u7m_viufem-fCDynuoLVWd9Hufpzb6PH87GFyWV7fXFxNTq5Lw2qSSi015CLAtaGSN7WtK0GYFJS0ojaUASdSThuOoWo5EU0FgjRTXmNWWUkY3UaHS99F8C95uKTmLhrbdbq3foiKUAxECsarjB78Qp_8EPo83UhhyN8D8pua6c4q17c-BW1GU3UigHFOgZFMHf1B5Wrs3Bnf29bl_g8BXgpM8DEG26pFcHMd3hQGNeamlrmpnJsac1M8a_Y_Bh6mc9t8KT6DygBZAjE_9TMbvjf63_UdWpSeHw</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Smits, Arne H.</creator><creator>Ziebell, Frederik</creator><creator>Joberty, Gerard</creator><creator>Zinn, Nico</creator><creator>Mueller, William F.</creator><creator>Clauder-Münster, Sandra</creator><creator>Eberhard, Dirk</creator><creator>Fälth Savitski, Maria</creator><creator>Grandi, Paola</creator><creator>Jakob, Petra</creator><creator>Michon, Anne-Marie</creator><creator>Sun, Hanice</creator><creator>Tessmer, Karen</creator><creator>Bürckstümmer, Tilmann</creator><creator>Bantscheff, Marcus</creator><creator>Steinmetz, Lars M.</creator><creator>Drewes, Gerard</creator><creator>Huber, Wolfgang</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0474-2218</orcidid><orcidid>https://orcid.org/0000-0002-8343-8977</orcidid><orcidid>https://orcid.org/0000-0002-3390-0027</orcidid><orcidid>https://orcid.org/0000-0001-6662-4105</orcidid></search><sort><creationdate>20191101</creationdate><title>Biological plasticity rescues target activity in CRISPR knock outs</title><author>Smits, Arne H. ; Ziebell, Frederik ; Joberty, Gerard ; Zinn, Nico ; Mueller, William F. ; Clauder-Münster, Sandra ; Eberhard, Dirk ; Fälth Savitski, Maria ; Grandi, Paola ; Jakob, Petra ; Michon, Anne-Marie ; Sun, Hanice ; Tessmer, Karen ; Bürckstümmer, Tilmann ; Bantscheff, Marcus ; Steinmetz, Lars M. ; Drewes, Gerard ; Huber, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-a9a0a0a205ac395d8e876249632f68c3405299bd5107f526d7062db58147e9243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/1647/1511</topic><topic>631/208/191/2018</topic><topic>631/61/191</topic><topic>Amino acid sequence</topic><topic>Analysis</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Cell Cycle Proteins - genetics</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA (Cytosine-5-)-Methyltransferase 1 - genetics</topic><topic>DNA sequencing</topic><topic>DNMT1 protein</topic><topic>Exons</topic><topic>Frameshift mutation</topic><topic>Gene Knockout Techniques</topic><topic>Humans</topic><topic>Isoforms</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mutation</topic><topic>Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - genetics</topic><topic>Phenotypes</topic><topic>Preservation</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smits, Arne H.</creatorcontrib><creatorcontrib>Ziebell, Frederik</creatorcontrib><creatorcontrib>Joberty, Gerard</creatorcontrib><creatorcontrib>Zinn, Nico</creatorcontrib><creatorcontrib>Mueller, William F.</creatorcontrib><creatorcontrib>Clauder-Münster, Sandra</creatorcontrib><creatorcontrib>Eberhard, Dirk</creatorcontrib><creatorcontrib>Fälth Savitski, Maria</creatorcontrib><creatorcontrib>Grandi, Paola</creatorcontrib><creatorcontrib>Jakob, Petra</creatorcontrib><creatorcontrib>Michon, Anne-Marie</creatorcontrib><creatorcontrib>Sun, Hanice</creatorcontrib><creatorcontrib>Tessmer, Karen</creatorcontrib><creatorcontrib>Bürckstümmer, Tilmann</creatorcontrib><creatorcontrib>Bantscheff, Marcus</creatorcontrib><creatorcontrib>Steinmetz, Lars M.</creatorcontrib><creatorcontrib>Drewes, Gerard</creatorcontrib><creatorcontrib>Huber, Wolfgang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smits, Arne H.</au><au>Ziebell, Frederik</au><au>Joberty, Gerard</au><au>Zinn, Nico</au><au>Mueller, William F.</au><au>Clauder-Münster, Sandra</au><au>Eberhard, Dirk</au><au>Fälth Savitski, Maria</au><au>Grandi, Paola</au><au>Jakob, Petra</au><au>Michon, Anne-Marie</au><au>Sun, Hanice</au><au>Tessmer, Karen</au><au>Bürckstümmer, Tilmann</au><au>Bantscheff, Marcus</au><au>Steinmetz, Lars M.</au><au>Drewes, Gerard</au><au>Huber, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biological plasticity rescues target activity in CRISPR knock outs</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>16</volume><issue>11</issue><spage>1087</spage><epage>1093</epage><pages>1087-1093</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Gene knock outs (KOs) are efficiently engineered through CRISPR–Cas9-induced frameshift mutations. While the efficiency of DNA editing is readily verified by DNA sequencing, a systematic understanding of the efficiency of protein elimination has been lacking. Here we devised an experimental strategy combining RNA sequencing and triple-stage mass spectrometry to characterize 193 genetically verified deletions targeting 136 distinct genes generated by CRISPR-induced frameshifts in HAP1 cells. We observed residual protein expression for about one third of the quantified targets, at variable levels from low to original, and identified two causal mechanisms, translation reinitiation leading to N-terminally truncated target proteins or skipping of the edited exon leading to protein isoforms with internal sequence deletions. Detailed analysis of three truncated targets, BRD4, DNMT1 and NGLY1, revealed partial preservation of protein function. Our results imply that systematic characterization of residual protein expression or function in CRISPR–Cas9-generated KO lines is necessary for phenotype interpretation.
One third of verified gene knock outs with CRISPR still show residual protein expression owing to translation reinitiation or exon skipping. Several proteins are still functional. The authors call for a systematic analysis of protein levels after genome editing.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31659326</pmid><doi>10.1038/s41592-019-0614-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0474-2218</orcidid><orcidid>https://orcid.org/0000-0002-8343-8977</orcidid><orcidid>https://orcid.org/0000-0002-3390-0027</orcidid><orcidid>https://orcid.org/0000-0001-6662-4105</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2019-11, Vol.16 (11), p.1087-1093 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_proquest_miscellaneous_2310296457 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 631/1647/1511 631/208/191/2018 631/61/191 Amino acid sequence Analysis Bioinformatics Biological activity Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Cell Cycle Proteins - genetics CRISPR CRISPR-Cas Systems - genetics Deoxyribonucleic acid DNA DNA (Cytosine-5-)-Methyltransferase 1 - genetics DNA sequencing DNMT1 protein Exons Frameshift mutation Gene Knockout Techniques Humans Isoforms Life Sciences Mass spectrometry Mass spectroscopy Mutation Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - genetics Phenotypes Preservation Protein expression Proteins Proteomics Ribonucleic acid RNA RNA sequencing Transcription Factors - genetics |
title | Biological plasticity rescues target activity in CRISPR knock outs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biological%20plasticity%20rescues%20target%20activity%20in%20CRISPR%20knock%20outs&rft.jtitle=Nature%20methods&rft.au=Smits,%20Arne%20H.&rft.date=2019-11-01&rft.volume=16&rft.issue=11&rft.spage=1087&rft.epage=1093&rft.pages=1087-1093&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-019-0614-5&rft_dat=%3Cgale_proqu%3EA604553042%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311010509&rft_id=info:pmid/31659326&rft_galeid=A604553042&rfr_iscdi=true |