A Self‐Assembled 2D Thermofunctional Material for Radiative Cooling
The regulation of temperature is a major energy‐consuming process of humankind. Today, around 15% of the global‐energy consumption is dedicated to refrigeration and this figure is predicted to triple by 2050, thus linking global warming and cooling needs in a worrying negative feedback‐loop. Here, a...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2019-12, Vol.15 (52), p.e1905290-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 52 |
container_start_page | e1905290 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 15 |
creator | Jaramillo‐Fernandez, Juliana Whitworth, Guy L. Pariente, Jose Angel Blanco, Alvaro Garcia, Pedro D. Lopez, Cefe Sotomayor‐Torres, Clivia M. |
description | The regulation of temperature is a major energy‐consuming process of humankind. Today, around 15% of the global‐energy consumption is dedicated to refrigeration and this figure is predicted to triple by 2050, thus linking global warming and cooling needs in a worrying negative feedback‐loop. Here, an inexpensive solution is proposed to this challenge based on a single layer of silica microspheres self‐assembled on a soda‐lime glass. This 2D crystal acts as a visibly translucent thermal‐blackbody for above‐ambient radiative cooling and can be used to improve the thermal performance of devices that undergo critical heating during operation. The temperature of a silicon wafer is found to be 14 K lower during daytime when covered with the thermal emitter, reaching an average temperature difference of 19 K when the structure is backed with a silver layer. In comparison, the soda‐lime glass reference used in the measurements lowers the temperature of the silicon by just 5 K. The cooling power of this simple radiative cooler under direct sunlight is found to be 350 W m−2 when applied to hot surfaces with relative temperatures of 50 K above the ambient. This is crucial to radiatively cool down devices, i.e., solar cells, where an increase in temperature has drastic effects on performance.
Powerless thermal management with zero emissions is more important than ever in the world's current climate crisis. This work unravels the radiative sky cooling potential of self‐assembled 2D crystals, showing that only a single layer of microspheres is necessary for achieving the maximum infrared emissivity, and thus the best cooling performance, greatly reducing the material costs for future upscaling and applicability. |
doi_str_mv | 10.1002/smll.201905290 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2309502789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309502789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4390-47ffcf6cc865bad0bc4168fd0a673fc3b9c86adb4088465d52de280475a12ff33</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EolBYGVEkFpaUazt2krEq5UdKhUTLHDmODamcutgJqBuPwDPyJKRqKRIL0_2ke-4n3YPQGYYBBiBXvjZmQACnwEgKe-gIc0xDnpB0f5cx9NCx93MAikkUH6IexZwBT-IjNB4GU2X018fn0HtVF0aVAbkOZi_K1Va3C9lUdiFMMBGNclUXtHXBoygr0VRvKhhZa6rF8wk60MJ4dbqdffR0M56N7sLs4fZ-NMxCGdEUwijWWmouZcJZIUooZIR5oksQPKZa0iLtNqIsIkiSiLOSkVKRBKKYCUy0prSPLje9S2dfW-WbvK68VMaIhbKtzwmFlAGJk7RDL_6gc9u67pU1RSEmjLC4owYbSjrrvVM6X7qqFm6VY8jXgvO14HwnuDs439a2Ra3KHf5jtAPSDfBeGbX6py6fTrLst_wbtxCHNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330725257</pqid></control><display><type>article</type><title>A Self‐Assembled 2D Thermofunctional Material for Radiative Cooling</title><source>Wiley Online Library All Journals</source><creator>Jaramillo‐Fernandez, Juliana ; Whitworth, Guy L. ; Pariente, Jose Angel ; Blanco, Alvaro ; Garcia, Pedro D. ; Lopez, Cefe ; Sotomayor‐Torres, Clivia M.</creator><creatorcontrib>Jaramillo‐Fernandez, Juliana ; Whitworth, Guy L. ; Pariente, Jose Angel ; Blanco, Alvaro ; Garcia, Pedro D. ; Lopez, Cefe ; Sotomayor‐Torres, Clivia M.</creatorcontrib><description>The regulation of temperature is a major energy‐consuming process of humankind. Today, around 15% of the global‐energy consumption is dedicated to refrigeration and this figure is predicted to triple by 2050, thus linking global warming and cooling needs in a worrying negative feedback‐loop. Here, an inexpensive solution is proposed to this challenge based on a single layer of silica microspheres self‐assembled on a soda‐lime glass. This 2D crystal acts as a visibly translucent thermal‐blackbody for above‐ambient radiative cooling and can be used to improve the thermal performance of devices that undergo critical heating during operation. The temperature of a silicon wafer is found to be 14 K lower during daytime when covered with the thermal emitter, reaching an average temperature difference of 19 K when the structure is backed with a silver layer. In comparison, the soda‐lime glass reference used in the measurements lowers the temperature of the silicon by just 5 K. The cooling power of this simple radiative cooler under direct sunlight is found to be 350 W m−2 when applied to hot surfaces with relative temperatures of 50 K above the ambient. This is crucial to radiatively cool down devices, i.e., solar cells, where an increase in temperature has drastic effects on performance.
Powerless thermal management with zero emissions is more important than ever in the world's current climate crisis. This work unravels the radiative sky cooling potential of self‐assembled 2D crystals, showing that only a single layer of microspheres is necessary for achieving the maximum infrared emissivity, and thus the best cooling performance, greatly reducing the material costs for future upscaling and applicability.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201905290</identifier><identifier>PMID: 31650687</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Black body radiation ; Cooling ; Emitters ; Energy consumption ; Glass ; Hot surfaces ; Lime ; Microspheres ; Nanotechnology ; Negative feedback ; Photovoltaic cells ; radiative cooling ; Refrigeration ; self‐assembled single‐layer crystals ; silica ; Silicon dioxide ; Silicon wafers ; Solar cells ; Temperature ; Temperature gradients ; thermofunctional materials ; ultra‐broadband thermal emitters</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2019-12, Vol.15 (52), p.e1905290-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4390-47ffcf6cc865bad0bc4168fd0a673fc3b9c86adb4088465d52de280475a12ff33</citedby><cites>FETCH-LOGICAL-c4390-47ffcf6cc865bad0bc4168fd0a673fc3b9c86adb4088465d52de280475a12ff33</cites><orcidid>0000-0002-4787-3904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201905290$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201905290$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31650687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaramillo‐Fernandez, Juliana</creatorcontrib><creatorcontrib>Whitworth, Guy L.</creatorcontrib><creatorcontrib>Pariente, Jose Angel</creatorcontrib><creatorcontrib>Blanco, Alvaro</creatorcontrib><creatorcontrib>Garcia, Pedro D.</creatorcontrib><creatorcontrib>Lopez, Cefe</creatorcontrib><creatorcontrib>Sotomayor‐Torres, Clivia M.</creatorcontrib><title>A Self‐Assembled 2D Thermofunctional Material for Radiative Cooling</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The regulation of temperature is a major energy‐consuming process of humankind. Today, around 15% of the global‐energy consumption is dedicated to refrigeration and this figure is predicted to triple by 2050, thus linking global warming and cooling needs in a worrying negative feedback‐loop. Here, an inexpensive solution is proposed to this challenge based on a single layer of silica microspheres self‐assembled on a soda‐lime glass. This 2D crystal acts as a visibly translucent thermal‐blackbody for above‐ambient radiative cooling and can be used to improve the thermal performance of devices that undergo critical heating during operation. The temperature of a silicon wafer is found to be 14 K lower during daytime when covered with the thermal emitter, reaching an average temperature difference of 19 K when the structure is backed with a silver layer. In comparison, the soda‐lime glass reference used in the measurements lowers the temperature of the silicon by just 5 K. The cooling power of this simple radiative cooler under direct sunlight is found to be 350 W m−2 when applied to hot surfaces with relative temperatures of 50 K above the ambient. This is crucial to radiatively cool down devices, i.e., solar cells, where an increase in temperature has drastic effects on performance.
Powerless thermal management with zero emissions is more important than ever in the world's current climate crisis. This work unravels the radiative sky cooling potential of self‐assembled 2D crystals, showing that only a single layer of microspheres is necessary for achieving the maximum infrared emissivity, and thus the best cooling performance, greatly reducing the material costs for future upscaling and applicability.</description><subject>Black body radiation</subject><subject>Cooling</subject><subject>Emitters</subject><subject>Energy consumption</subject><subject>Glass</subject><subject>Hot surfaces</subject><subject>Lime</subject><subject>Microspheres</subject><subject>Nanotechnology</subject><subject>Negative feedback</subject><subject>Photovoltaic cells</subject><subject>radiative cooling</subject><subject>Refrigeration</subject><subject>self‐assembled single‐layer crystals</subject><subject>silica</subject><subject>Silicon dioxide</subject><subject>Silicon wafers</subject><subject>Solar cells</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>thermofunctional materials</subject><subject>ultra‐broadband thermal emitters</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EolBYGVEkFpaUazt2krEq5UdKhUTLHDmODamcutgJqBuPwDPyJKRqKRIL0_2ke-4n3YPQGYYBBiBXvjZmQACnwEgKe-gIc0xDnpB0f5cx9NCx93MAikkUH6IexZwBT-IjNB4GU2X018fn0HtVF0aVAbkOZi_K1Va3C9lUdiFMMBGNclUXtHXBoygr0VRvKhhZa6rF8wk60MJ4dbqdffR0M56N7sLs4fZ-NMxCGdEUwijWWmouZcJZIUooZIR5oksQPKZa0iLtNqIsIkiSiLOSkVKRBKKYCUy0prSPLje9S2dfW-WbvK68VMaIhbKtzwmFlAGJk7RDL_6gc9u67pU1RSEmjLC4owYbSjrrvVM6X7qqFm6VY8jXgvO14HwnuDs439a2Ra3KHf5jtAPSDfBeGbX6py6fTrLst_wbtxCHNw</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Jaramillo‐Fernandez, Juliana</creator><creator>Whitworth, Guy L.</creator><creator>Pariente, Jose Angel</creator><creator>Blanco, Alvaro</creator><creator>Garcia, Pedro D.</creator><creator>Lopez, Cefe</creator><creator>Sotomayor‐Torres, Clivia M.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4787-3904</orcidid></search><sort><creationdate>20191201</creationdate><title>A Self‐Assembled 2D Thermofunctional Material for Radiative Cooling</title><author>Jaramillo‐Fernandez, Juliana ; Whitworth, Guy L. ; Pariente, Jose Angel ; Blanco, Alvaro ; Garcia, Pedro D. ; Lopez, Cefe ; Sotomayor‐Torres, Clivia M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4390-47ffcf6cc865bad0bc4168fd0a673fc3b9c86adb4088465d52de280475a12ff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Black body radiation</topic><topic>Cooling</topic><topic>Emitters</topic><topic>Energy consumption</topic><topic>Glass</topic><topic>Hot surfaces</topic><topic>Lime</topic><topic>Microspheres</topic><topic>Nanotechnology</topic><topic>Negative feedback</topic><topic>Photovoltaic cells</topic><topic>radiative cooling</topic><topic>Refrigeration</topic><topic>self‐assembled single‐layer crystals</topic><topic>silica</topic><topic>Silicon dioxide</topic><topic>Silicon wafers</topic><topic>Solar cells</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>thermofunctional materials</topic><topic>ultra‐broadband thermal emitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaramillo‐Fernandez, Juliana</creatorcontrib><creatorcontrib>Whitworth, Guy L.</creatorcontrib><creatorcontrib>Pariente, Jose Angel</creatorcontrib><creatorcontrib>Blanco, Alvaro</creatorcontrib><creatorcontrib>Garcia, Pedro D.</creatorcontrib><creatorcontrib>Lopez, Cefe</creatorcontrib><creatorcontrib>Sotomayor‐Torres, Clivia M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaramillo‐Fernandez, Juliana</au><au>Whitworth, Guy L.</au><au>Pariente, Jose Angel</au><au>Blanco, Alvaro</au><au>Garcia, Pedro D.</au><au>Lopez, Cefe</au><au>Sotomayor‐Torres, Clivia M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Self‐Assembled 2D Thermofunctional Material for Radiative Cooling</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>15</volume><issue>52</issue><spage>e1905290</spage><epage>n/a</epage><pages>e1905290-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The regulation of temperature is a major energy‐consuming process of humankind. Today, around 15% of the global‐energy consumption is dedicated to refrigeration and this figure is predicted to triple by 2050, thus linking global warming and cooling needs in a worrying negative feedback‐loop. Here, an inexpensive solution is proposed to this challenge based on a single layer of silica microspheres self‐assembled on a soda‐lime glass. This 2D crystal acts as a visibly translucent thermal‐blackbody for above‐ambient radiative cooling and can be used to improve the thermal performance of devices that undergo critical heating during operation. The temperature of a silicon wafer is found to be 14 K lower during daytime when covered with the thermal emitter, reaching an average temperature difference of 19 K when the structure is backed with a silver layer. In comparison, the soda‐lime glass reference used in the measurements lowers the temperature of the silicon by just 5 K. The cooling power of this simple radiative cooler under direct sunlight is found to be 350 W m−2 when applied to hot surfaces with relative temperatures of 50 K above the ambient. This is crucial to radiatively cool down devices, i.e., solar cells, where an increase in temperature has drastic effects on performance.
Powerless thermal management with zero emissions is more important than ever in the world's current climate crisis. This work unravels the radiative sky cooling potential of self‐assembled 2D crystals, showing that only a single layer of microspheres is necessary for achieving the maximum infrared emissivity, and thus the best cooling performance, greatly reducing the material costs for future upscaling and applicability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31650687</pmid><doi>10.1002/smll.201905290</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4787-3904</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2019-12, Vol.15 (52), p.e1905290-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2309502789 |
source | Wiley Online Library All Journals |
subjects | Black body radiation Cooling Emitters Energy consumption Glass Hot surfaces Lime Microspheres Nanotechnology Negative feedback Photovoltaic cells radiative cooling Refrigeration self‐assembled single‐layer crystals silica Silicon dioxide Silicon wafers Solar cells Temperature Temperature gradients thermofunctional materials ultra‐broadband thermal emitters |
title | A Self‐Assembled 2D Thermofunctional Material for Radiative Cooling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Self%E2%80%90Assembled%202D%20Thermofunctional%20Material%20for%20Radiative%20Cooling&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Jaramillo%E2%80%90Fernandez,%20Juliana&rft.date=2019-12-01&rft.volume=15&rft.issue=52&rft.spage=e1905290&rft.epage=n/a&rft.pages=e1905290-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201905290&rft_dat=%3Cproquest_cross%3E2309502789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330725257&rft_id=info:pmid/31650687&rfr_iscdi=true |