Further studies on the signal enhancement effect in laser diode thermal desorption‐triple quadrupole mass spectrometry using microwell surface coatings
The laser diode thermal desorption (LDTD) ionization source allows ultrafast and sensitive analysis of small molecules by mass spectrometry. Signal enhancement in LDTD has been observed when coating the surface of sample microwells with a solution of ethylenediaminetetraacetic acid (EDTA) or nitrilo...
Gespeichert in:
Veröffentlicht in: | Journal of mass spectrometry. 2019-12, Vol.54 (12), p.948-956 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 956 |
---|---|
container_issue | 12 |
container_start_page | 948 |
container_title | Journal of mass spectrometry. |
container_volume | 54 |
creator | Gravel, Alexia Guérette, Cassandra Fortin, Daniel Auger, Serge Picard, Pierre Segura, Pedro A. |
description | The laser diode thermal desorption (LDTD) ionization source allows ultrafast and sensitive analysis of small molecules by mass spectrometry. Signal enhancement in LDTD has been observed when coating the surface of sample microwells with a solution of ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetic acid. Here we present a quantitative analysis of signal enhancement using solutions of diverse commercial proteins (lysozyme, immunoglobulin G, albumin, and fibrinogen) as coatings. Results showed that compounds with polar chemical functions such as carboxylic acid, sulfonyl, and nitro had signal enhancement factors, in most cases higher than 10, when using any of the tested proteins as coating agent. Analysis of variance revealed that immunoglobulin G and fibrinogen gave the best results. However, the signal enhancement factors obtained with these proteins were not superior to those observed with EDTA. To explain the signal enhancement effect of proteins, analysis by scanning electron microscopy of dried samples on the microwell sample plates was carried out. Images showed that salicylic acid, one of the compounds with the highest observed signal enhancement, formed a thick layer when applied directly on the uncoated surface, but it formed small crystals ( |
doi_str_mv | 10.1002/jms.4455 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2309496586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309496586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3865-a2dc5d94d1136cce43825b90fd213dc43d7382ee135db86d0fc73ba44c1adf3e3</originalsourceid><addsrcrecordid>eNp1kc9qFTEUhwex2FoFn0ACbtxMm0z-3JmlFKuVigt1PeQmZ9pcJsk0J6HcnY_g1tfzScy0VUFwlZPky8c5-TXNC0ZPGKXd6c7jiRBSPmqOGB1UO_R9_3itN6qVbCMOm6eIO0rpMAj1pDnkTMmO9-qo-XFeUr6GRDAX6wBJDKTuCbqroGcC4VoHAx5CJjBNYDJxgcwa6wvrooUVTr6SFjCmJbsYfn77npNbZiA3RdtUllhLrxEJLlWQooec9qSgC1fEO5PiLcwzwZImbYCYqHO9wWfNwaRnhOcP63Hz9fztl7P37eWndxdnby5bUweQre6skXYQljGujAHB-05uBzrZjnFrBLebegLAuLTbXlk6mQ3faiEM03biwI-b1_feJcWbAphH79DUjnSAWHDsOB3EoGSvKvrqH3QXS6r_tFJcMCqEkn-FdTLEBNO4JOd12o-MjmtcY41rXOOq6MsHYdl6sH_A3_lUoL0Hbt0M-_-Kxg8fP98JfwFuNqPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334104465</pqid></control><display><type>article</type><title>Further studies on the signal enhancement effect in laser diode thermal desorption‐triple quadrupole mass spectrometry using microwell surface coatings</title><source>Access via Wiley Online Library</source><creator>Gravel, Alexia ; Guérette, Cassandra ; Fortin, Daniel ; Auger, Serge ; Picard, Pierre ; Segura, Pedro A.</creator><creatorcontrib>Gravel, Alexia ; Guérette, Cassandra ; Fortin, Daniel ; Auger, Serge ; Picard, Pierre ; Segura, Pedro A.</creatorcontrib><description>The laser diode thermal desorption (LDTD) ionization source allows ultrafast and sensitive analysis of small molecules by mass spectrometry. Signal enhancement in LDTD has been observed when coating the surface of sample microwells with a solution of ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetic acid. Here we present a quantitative analysis of signal enhancement using solutions of diverse commercial proteins (lysozyme, immunoglobulin G, albumin, and fibrinogen) as coatings. Results showed that compounds with polar chemical functions such as carboxylic acid, sulfonyl, and nitro had signal enhancement factors, in most cases higher than 10, when using any of the tested proteins as coating agent. Analysis of variance revealed that immunoglobulin G and fibrinogen gave the best results. However, the signal enhancement factors obtained with these proteins were not superior to those observed with EDTA. To explain the signal enhancement effect of proteins, analysis by scanning electron microscopy of dried samples on the microwell sample plates was carried out. Images showed that salicylic acid, one of the compounds with the highest observed signal enhancement, formed a thick layer when applied directly on the uncoated surface, but it formed small crystals (<1 μm) in the presence of protein or EDTA coatings. Further crystallographic studies using powder X‐ray diffraction showed that the crystalline form of salicylic acid is modified in the presence of EDTA. Salicylic acid when mixed with EDTA had a higher percentage of amorphous phase (38.1%) than without EDTA (23.1%). These results appear to confirm that the diminution of crystal size of analytes and the increase of amorphous phase are implicated in signal enhancement effect observed in LDTD using microwell surface coatings. To design better coatings and completely elucidate the signal enhancement effect in LDTD, more studies are necessary to understand the effects of coatings on the ionization of analytes.</description><identifier>ISSN: 1076-5174</identifier><identifier>EISSN: 1096-9888</identifier><identifier>DOI: 10.1002/jms.4455</identifier><identifier>PMID: 31652386</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Acetic acid ; Acids ; Albumins ; Carboxylic acids ; Chemical compounds ; Coatings ; Crystallography ; Crystals ; Desorption ; Edetic acid ; Electron microscopy ; Ethylenediaminetetraacetic acids ; Fibrinogen ; high‐throughput ; hormones ; IgG antibody ; Immunoglobulin G ; Immunoglobulins ; Ionization ; Lasers ; Lysozyme ; Mass spectrometry ; Mass spectroscopy ; Nitrilotriacetic acid ; Organic chemistry ; pesticides ; pharmaceuticals ; powder X‐ray diffraction ; Proteins ; Quadrupoles ; Salicylic acid ; Scanning electron microscopy ; Scientific imaging ; Semiconductor lasers ; small organic molecules ; Spectroscopy ; stainless steel ; Variance analysis</subject><ispartof>Journal of mass spectrometry., 2019-12, Vol.54 (12), p.948-956</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3865-a2dc5d94d1136cce43825b90fd213dc43d7382ee135db86d0fc73ba44c1adf3e3</citedby><cites>FETCH-LOGICAL-c3865-a2dc5d94d1136cce43825b90fd213dc43d7382ee135db86d0fc73ba44c1adf3e3</cites><orcidid>0000-0002-4552-4903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjms.4455$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjms.4455$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31652386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gravel, Alexia</creatorcontrib><creatorcontrib>Guérette, Cassandra</creatorcontrib><creatorcontrib>Fortin, Daniel</creatorcontrib><creatorcontrib>Auger, Serge</creatorcontrib><creatorcontrib>Picard, Pierre</creatorcontrib><creatorcontrib>Segura, Pedro A.</creatorcontrib><title>Further studies on the signal enhancement effect in laser diode thermal desorption‐triple quadrupole mass spectrometry using microwell surface coatings</title><title>Journal of mass spectrometry.</title><addtitle>J Mass Spectrom</addtitle><description>The laser diode thermal desorption (LDTD) ionization source allows ultrafast and sensitive analysis of small molecules by mass spectrometry. Signal enhancement in LDTD has been observed when coating the surface of sample microwells with a solution of ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetic acid. Here we present a quantitative analysis of signal enhancement using solutions of diverse commercial proteins (lysozyme, immunoglobulin G, albumin, and fibrinogen) as coatings. Results showed that compounds with polar chemical functions such as carboxylic acid, sulfonyl, and nitro had signal enhancement factors, in most cases higher than 10, when using any of the tested proteins as coating agent. Analysis of variance revealed that immunoglobulin G and fibrinogen gave the best results. However, the signal enhancement factors obtained with these proteins were not superior to those observed with EDTA. To explain the signal enhancement effect of proteins, analysis by scanning electron microscopy of dried samples on the microwell sample plates was carried out. Images showed that salicylic acid, one of the compounds with the highest observed signal enhancement, formed a thick layer when applied directly on the uncoated surface, but it formed small crystals (<1 μm) in the presence of protein or EDTA coatings. Further crystallographic studies using powder X‐ray diffraction showed that the crystalline form of salicylic acid is modified in the presence of EDTA. Salicylic acid when mixed with EDTA had a higher percentage of amorphous phase (38.1%) than without EDTA (23.1%). These results appear to confirm that the diminution of crystal size of analytes and the increase of amorphous phase are implicated in signal enhancement effect observed in LDTD using microwell surface coatings. To design better coatings and completely elucidate the signal enhancement effect in LDTD, more studies are necessary to understand the effects of coatings on the ionization of analytes.</description><subject>Acetic acid</subject><subject>Acids</subject><subject>Albumins</subject><subject>Carboxylic acids</subject><subject>Chemical compounds</subject><subject>Coatings</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Desorption</subject><subject>Edetic acid</subject><subject>Electron microscopy</subject><subject>Ethylenediaminetetraacetic acids</subject><subject>Fibrinogen</subject><subject>high‐throughput</subject><subject>hormones</subject><subject>IgG antibody</subject><subject>Immunoglobulin G</subject><subject>Immunoglobulins</subject><subject>Ionization</subject><subject>Lasers</subject><subject>Lysozyme</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Nitrilotriacetic acid</subject><subject>Organic chemistry</subject><subject>pesticides</subject><subject>pharmaceuticals</subject><subject>powder X‐ray diffraction</subject><subject>Proteins</subject><subject>Quadrupoles</subject><subject>Salicylic acid</subject><subject>Scanning electron microscopy</subject><subject>Scientific imaging</subject><subject>Semiconductor lasers</subject><subject>small organic molecules</subject><subject>Spectroscopy</subject><subject>stainless steel</subject><subject>Variance analysis</subject><issn>1076-5174</issn><issn>1096-9888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc9qFTEUhwex2FoFn0ACbtxMm0z-3JmlFKuVigt1PeQmZ9pcJsk0J6HcnY_g1tfzScy0VUFwlZPky8c5-TXNC0ZPGKXd6c7jiRBSPmqOGB1UO_R9_3itN6qVbCMOm6eIO0rpMAj1pDnkTMmO9-qo-XFeUr6GRDAX6wBJDKTuCbqroGcC4VoHAx5CJjBNYDJxgcwa6wvrooUVTr6SFjCmJbsYfn77npNbZiA3RdtUllhLrxEJLlWQooec9qSgC1fEO5PiLcwzwZImbYCYqHO9wWfNwaRnhOcP63Hz9fztl7P37eWndxdnby5bUweQre6skXYQljGujAHB-05uBzrZjnFrBLebegLAuLTbXlk6mQ3faiEM03biwI-b1_feJcWbAphH79DUjnSAWHDsOB3EoGSvKvrqH3QXS6r_tFJcMCqEkn-FdTLEBNO4JOd12o-MjmtcY41rXOOq6MsHYdl6sH_A3_lUoL0Hbt0M-_-Kxg8fP98JfwFuNqPA</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Gravel, Alexia</creator><creator>Guérette, Cassandra</creator><creator>Fortin, Daniel</creator><creator>Auger, Serge</creator><creator>Picard, Pierre</creator><creator>Segura, Pedro A.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4552-4903</orcidid></search><sort><creationdate>201912</creationdate><title>Further studies on the signal enhancement effect in laser diode thermal desorption‐triple quadrupole mass spectrometry using microwell surface coatings</title><author>Gravel, Alexia ; Guérette, Cassandra ; Fortin, Daniel ; Auger, Serge ; Picard, Pierre ; Segura, Pedro A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3865-a2dc5d94d1136cce43825b90fd213dc43d7382ee135db86d0fc73ba44c1adf3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetic acid</topic><topic>Acids</topic><topic>Albumins</topic><topic>Carboxylic acids</topic><topic>Chemical compounds</topic><topic>Coatings</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Desorption</topic><topic>Edetic acid</topic><topic>Electron microscopy</topic><topic>Ethylenediaminetetraacetic acids</topic><topic>Fibrinogen</topic><topic>high‐throughput</topic><topic>hormones</topic><topic>IgG antibody</topic><topic>Immunoglobulin G</topic><topic>Immunoglobulins</topic><topic>Ionization</topic><topic>Lasers</topic><topic>Lysozyme</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Nitrilotriacetic acid</topic><topic>Organic chemistry</topic><topic>pesticides</topic><topic>pharmaceuticals</topic><topic>powder X‐ray diffraction</topic><topic>Proteins</topic><topic>Quadrupoles</topic><topic>Salicylic acid</topic><topic>Scanning electron microscopy</topic><topic>Scientific imaging</topic><topic>Semiconductor lasers</topic><topic>small organic molecules</topic><topic>Spectroscopy</topic><topic>stainless steel</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gravel, Alexia</creatorcontrib><creatorcontrib>Guérette, Cassandra</creatorcontrib><creatorcontrib>Fortin, Daniel</creatorcontrib><creatorcontrib>Auger, Serge</creatorcontrib><creatorcontrib>Picard, Pierre</creatorcontrib><creatorcontrib>Segura, Pedro A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mass spectrometry.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gravel, Alexia</au><au>Guérette, Cassandra</au><au>Fortin, Daniel</au><au>Auger, Serge</au><au>Picard, Pierre</au><au>Segura, Pedro A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Further studies on the signal enhancement effect in laser diode thermal desorption‐triple quadrupole mass spectrometry using microwell surface coatings</atitle><jtitle>Journal of mass spectrometry.</jtitle><addtitle>J Mass Spectrom</addtitle><date>2019-12</date><risdate>2019</risdate><volume>54</volume><issue>12</issue><spage>948</spage><epage>956</epage><pages>948-956</pages><issn>1076-5174</issn><eissn>1096-9888</eissn><abstract>The laser diode thermal desorption (LDTD) ionization source allows ultrafast and sensitive analysis of small molecules by mass spectrometry. Signal enhancement in LDTD has been observed when coating the surface of sample microwells with a solution of ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetic acid. Here we present a quantitative analysis of signal enhancement using solutions of diverse commercial proteins (lysozyme, immunoglobulin G, albumin, and fibrinogen) as coatings. Results showed that compounds with polar chemical functions such as carboxylic acid, sulfonyl, and nitro had signal enhancement factors, in most cases higher than 10, when using any of the tested proteins as coating agent. Analysis of variance revealed that immunoglobulin G and fibrinogen gave the best results. However, the signal enhancement factors obtained with these proteins were not superior to those observed with EDTA. To explain the signal enhancement effect of proteins, analysis by scanning electron microscopy of dried samples on the microwell sample plates was carried out. Images showed that salicylic acid, one of the compounds with the highest observed signal enhancement, formed a thick layer when applied directly on the uncoated surface, but it formed small crystals (<1 μm) in the presence of protein or EDTA coatings. Further crystallographic studies using powder X‐ray diffraction showed that the crystalline form of salicylic acid is modified in the presence of EDTA. Salicylic acid when mixed with EDTA had a higher percentage of amorphous phase (38.1%) than without EDTA (23.1%). These results appear to confirm that the diminution of crystal size of analytes and the increase of amorphous phase are implicated in signal enhancement effect observed in LDTD using microwell surface coatings. To design better coatings and completely elucidate the signal enhancement effect in LDTD, more studies are necessary to understand the effects of coatings on the ionization of analytes.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31652386</pmid><doi>10.1002/jms.4455</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4552-4903</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-5174 |
ispartof | Journal of mass spectrometry., 2019-12, Vol.54 (12), p.948-956 |
issn | 1076-5174 1096-9888 |
language | eng |
recordid | cdi_proquest_miscellaneous_2309496586 |
source | Access via Wiley Online Library |
subjects | Acetic acid Acids Albumins Carboxylic acids Chemical compounds Coatings Crystallography Crystals Desorption Edetic acid Electron microscopy Ethylenediaminetetraacetic acids Fibrinogen high‐throughput hormones IgG antibody Immunoglobulin G Immunoglobulins Ionization Lasers Lysozyme Mass spectrometry Mass spectroscopy Nitrilotriacetic acid Organic chemistry pesticides pharmaceuticals powder X‐ray diffraction Proteins Quadrupoles Salicylic acid Scanning electron microscopy Scientific imaging Semiconductor lasers small organic molecules Spectroscopy stainless steel Variance analysis |
title | Further studies on the signal enhancement effect in laser diode thermal desorption‐triple quadrupole mass spectrometry using microwell surface coatings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Further%20studies%20on%20the%20signal%20enhancement%20effect%20in%20laser%20diode%20thermal%20desorption%E2%80%90triple%20quadrupole%20mass%20spectrometry%20using%20microwell%20surface%20coatings&rft.jtitle=Journal%20of%20mass%20spectrometry.&rft.au=Gravel,%20Alexia&rft.date=2019-12&rft.volume=54&rft.issue=12&rft.spage=948&rft.epage=956&rft.pages=948-956&rft.issn=1076-5174&rft.eissn=1096-9888&rft_id=info:doi/10.1002/jms.4455&rft_dat=%3Cproquest_cross%3E2309496586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334104465&rft_id=info:pmid/31652386&rfr_iscdi=true |