Further studies on the signal enhancement effect in laser diode thermal desorption‐triple quadrupole mass spectrometry using microwell surface coatings

The laser diode thermal desorption (LDTD) ionization source allows ultrafast and sensitive analysis of small molecules by mass spectrometry. Signal enhancement in LDTD has been observed when coating the surface of sample microwells with a solution of ethylenediaminetetraacetic acid (EDTA) or nitrilo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mass spectrometry. 2019-12, Vol.54 (12), p.948-956
Hauptverfasser: Gravel, Alexia, Guérette, Cassandra, Fortin, Daniel, Auger, Serge, Picard, Pierre, Segura, Pedro A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 956
container_issue 12
container_start_page 948
container_title Journal of mass spectrometry.
container_volume 54
creator Gravel, Alexia
Guérette, Cassandra
Fortin, Daniel
Auger, Serge
Picard, Pierre
Segura, Pedro A.
description The laser diode thermal desorption (LDTD) ionization source allows ultrafast and sensitive analysis of small molecules by mass spectrometry. Signal enhancement in LDTD has been observed when coating the surface of sample microwells with a solution of ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetic acid. Here we present a quantitative analysis of signal enhancement using solutions of diverse commercial proteins (lysozyme, immunoglobulin G, albumin, and fibrinogen) as coatings. Results showed that compounds with polar chemical functions such as carboxylic acid, sulfonyl, and nitro had signal enhancement factors, in most cases higher than 10, when using any of the tested proteins as coating agent. Analysis of variance revealed that immunoglobulin G and fibrinogen gave the best results. However, the signal enhancement factors obtained with these proteins were not superior to those observed with EDTA. To explain the signal enhancement effect of proteins, analysis by scanning electron microscopy of dried samples on the microwell sample plates was carried out. Images showed that salicylic acid, one of the compounds with the highest observed signal enhancement, formed a thick layer when applied directly on the uncoated surface, but it formed small crystals (
doi_str_mv 10.1002/jms.4455
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2309496586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309496586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3865-a2dc5d94d1136cce43825b90fd213dc43d7382ee135db86d0fc73ba44c1adf3e3</originalsourceid><addsrcrecordid>eNp1kc9qFTEUhwex2FoFn0ACbtxMm0z-3JmlFKuVigt1PeQmZ9pcJsk0J6HcnY_g1tfzScy0VUFwlZPky8c5-TXNC0ZPGKXd6c7jiRBSPmqOGB1UO_R9_3itN6qVbCMOm6eIO0rpMAj1pDnkTMmO9-qo-XFeUr6GRDAX6wBJDKTuCbqroGcC4VoHAx5CJjBNYDJxgcwa6wvrooUVTr6SFjCmJbsYfn77npNbZiA3RdtUllhLrxEJLlWQooec9qSgC1fEO5PiLcwzwZImbYCYqHO9wWfNwaRnhOcP63Hz9fztl7P37eWndxdnby5bUweQre6skXYQljGujAHB-05uBzrZjnFrBLebegLAuLTbXlk6mQ3faiEM03biwI-b1_feJcWbAphH79DUjnSAWHDsOB3EoGSvKvrqH3QXS6r_tFJcMCqEkn-FdTLEBNO4JOd12o-MjmtcY41rXOOq6MsHYdl6sH_A3_lUoL0Hbt0M-_-Kxg8fP98JfwFuNqPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334104465</pqid></control><display><type>article</type><title>Further studies on the signal enhancement effect in laser diode thermal desorption‐triple quadrupole mass spectrometry using microwell surface coatings</title><source>Access via Wiley Online Library</source><creator>Gravel, Alexia ; Guérette, Cassandra ; Fortin, Daniel ; Auger, Serge ; Picard, Pierre ; Segura, Pedro A.</creator><creatorcontrib>Gravel, Alexia ; Guérette, Cassandra ; Fortin, Daniel ; Auger, Serge ; Picard, Pierre ; Segura, Pedro A.</creatorcontrib><description>The laser diode thermal desorption (LDTD) ionization source allows ultrafast and sensitive analysis of small molecules by mass spectrometry. Signal enhancement in LDTD has been observed when coating the surface of sample microwells with a solution of ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetic acid. Here we present a quantitative analysis of signal enhancement using solutions of diverse commercial proteins (lysozyme, immunoglobulin G, albumin, and fibrinogen) as coatings. Results showed that compounds with polar chemical functions such as carboxylic acid, sulfonyl, and nitro had signal enhancement factors, in most cases higher than 10, when using any of the tested proteins as coating agent. Analysis of variance revealed that immunoglobulin G and fibrinogen gave the best results. However, the signal enhancement factors obtained with these proteins were not superior to those observed with EDTA. To explain the signal enhancement effect of proteins, analysis by scanning electron microscopy of dried samples on the microwell sample plates was carried out. Images showed that salicylic acid, one of the compounds with the highest observed signal enhancement, formed a thick layer when applied directly on the uncoated surface, but it formed small crystals (&lt;1 μm) in the presence of protein or EDTA coatings. Further crystallographic studies using powder X‐ray diffraction showed that the crystalline form of salicylic acid is modified in the presence of EDTA. Salicylic acid when mixed with EDTA had a higher percentage of amorphous phase (38.1%) than without EDTA (23.1%). These results appear to confirm that the diminution of crystal size of analytes and the increase of amorphous phase are implicated in signal enhancement effect observed in LDTD using microwell surface coatings. To design better coatings and completely elucidate the signal enhancement effect in LDTD, more studies are necessary to understand the effects of coatings on the ionization of analytes.</description><identifier>ISSN: 1076-5174</identifier><identifier>EISSN: 1096-9888</identifier><identifier>DOI: 10.1002/jms.4455</identifier><identifier>PMID: 31652386</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Acetic acid ; Acids ; Albumins ; Carboxylic acids ; Chemical compounds ; Coatings ; Crystallography ; Crystals ; Desorption ; Edetic acid ; Electron microscopy ; Ethylenediaminetetraacetic acids ; Fibrinogen ; high‐throughput ; hormones ; IgG antibody ; Immunoglobulin G ; Immunoglobulins ; Ionization ; Lasers ; Lysozyme ; Mass spectrometry ; Mass spectroscopy ; Nitrilotriacetic acid ; Organic chemistry ; pesticides ; pharmaceuticals ; powder X‐ray diffraction ; Proteins ; Quadrupoles ; Salicylic acid ; Scanning electron microscopy ; Scientific imaging ; Semiconductor lasers ; small organic molecules ; Spectroscopy ; stainless steel ; Variance analysis</subject><ispartof>Journal of mass spectrometry., 2019-12, Vol.54 (12), p.948-956</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3865-a2dc5d94d1136cce43825b90fd213dc43d7382ee135db86d0fc73ba44c1adf3e3</citedby><cites>FETCH-LOGICAL-c3865-a2dc5d94d1136cce43825b90fd213dc43d7382ee135db86d0fc73ba44c1adf3e3</cites><orcidid>0000-0002-4552-4903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjms.4455$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjms.4455$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31652386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gravel, Alexia</creatorcontrib><creatorcontrib>Guérette, Cassandra</creatorcontrib><creatorcontrib>Fortin, Daniel</creatorcontrib><creatorcontrib>Auger, Serge</creatorcontrib><creatorcontrib>Picard, Pierre</creatorcontrib><creatorcontrib>Segura, Pedro A.</creatorcontrib><title>Further studies on the signal enhancement effect in laser diode thermal desorption‐triple quadrupole mass spectrometry using microwell surface coatings</title><title>Journal of mass spectrometry.</title><addtitle>J Mass Spectrom</addtitle><description>The laser diode thermal desorption (LDTD) ionization source allows ultrafast and sensitive analysis of small molecules by mass spectrometry. Signal enhancement in LDTD has been observed when coating the surface of sample microwells with a solution of ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetic acid. Here we present a quantitative analysis of signal enhancement using solutions of diverse commercial proteins (lysozyme, immunoglobulin G, albumin, and fibrinogen) as coatings. Results showed that compounds with polar chemical functions such as carboxylic acid, sulfonyl, and nitro had signal enhancement factors, in most cases higher than 10, when using any of the tested proteins as coating agent. Analysis of variance revealed that immunoglobulin G and fibrinogen gave the best results. However, the signal enhancement factors obtained with these proteins were not superior to those observed with EDTA. To explain the signal enhancement effect of proteins, analysis by scanning electron microscopy of dried samples on the microwell sample plates was carried out. Images showed that salicylic acid, one of the compounds with the highest observed signal enhancement, formed a thick layer when applied directly on the uncoated surface, but it formed small crystals (&lt;1 μm) in the presence of protein or EDTA coatings. Further crystallographic studies using powder X‐ray diffraction showed that the crystalline form of salicylic acid is modified in the presence of EDTA. Salicylic acid when mixed with EDTA had a higher percentage of amorphous phase (38.1%) than without EDTA (23.1%). These results appear to confirm that the diminution of crystal size of analytes and the increase of amorphous phase are implicated in signal enhancement effect observed in LDTD using microwell surface coatings. To design better coatings and completely elucidate the signal enhancement effect in LDTD, more studies are necessary to understand the effects of coatings on the ionization of analytes.</description><subject>Acetic acid</subject><subject>Acids</subject><subject>Albumins</subject><subject>Carboxylic acids</subject><subject>Chemical compounds</subject><subject>Coatings</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Desorption</subject><subject>Edetic acid</subject><subject>Electron microscopy</subject><subject>Ethylenediaminetetraacetic acids</subject><subject>Fibrinogen</subject><subject>high‐throughput</subject><subject>hormones</subject><subject>IgG antibody</subject><subject>Immunoglobulin G</subject><subject>Immunoglobulins</subject><subject>Ionization</subject><subject>Lasers</subject><subject>Lysozyme</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Nitrilotriacetic acid</subject><subject>Organic chemistry</subject><subject>pesticides</subject><subject>pharmaceuticals</subject><subject>powder X‐ray diffraction</subject><subject>Proteins</subject><subject>Quadrupoles</subject><subject>Salicylic acid</subject><subject>Scanning electron microscopy</subject><subject>Scientific imaging</subject><subject>Semiconductor lasers</subject><subject>small organic molecules</subject><subject>Spectroscopy</subject><subject>stainless steel</subject><subject>Variance analysis</subject><issn>1076-5174</issn><issn>1096-9888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc9qFTEUhwex2FoFn0ACbtxMm0z-3JmlFKuVigt1PeQmZ9pcJsk0J6HcnY_g1tfzScy0VUFwlZPky8c5-TXNC0ZPGKXd6c7jiRBSPmqOGB1UO_R9_3itN6qVbCMOm6eIO0rpMAj1pDnkTMmO9-qo-XFeUr6GRDAX6wBJDKTuCbqroGcC4VoHAx5CJjBNYDJxgcwa6wvrooUVTr6SFjCmJbsYfn77npNbZiA3RdtUllhLrxEJLlWQooec9qSgC1fEO5PiLcwzwZImbYCYqHO9wWfNwaRnhOcP63Hz9fztl7P37eWndxdnby5bUweQre6skXYQljGujAHB-05uBzrZjnFrBLebegLAuLTbXlk6mQ3faiEM03biwI-b1_feJcWbAphH79DUjnSAWHDsOB3EoGSvKvrqH3QXS6r_tFJcMCqEkn-FdTLEBNO4JOd12o-MjmtcY41rXOOq6MsHYdl6sH_A3_lUoL0Hbt0M-_-Kxg8fP98JfwFuNqPA</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Gravel, Alexia</creator><creator>Guérette, Cassandra</creator><creator>Fortin, Daniel</creator><creator>Auger, Serge</creator><creator>Picard, Pierre</creator><creator>Segura, Pedro A.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4552-4903</orcidid></search><sort><creationdate>201912</creationdate><title>Further studies on the signal enhancement effect in laser diode thermal desorption‐triple quadrupole mass spectrometry using microwell surface coatings</title><author>Gravel, Alexia ; Guérette, Cassandra ; Fortin, Daniel ; Auger, Serge ; Picard, Pierre ; Segura, Pedro A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3865-a2dc5d94d1136cce43825b90fd213dc43d7382ee135db86d0fc73ba44c1adf3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetic acid</topic><topic>Acids</topic><topic>Albumins</topic><topic>Carboxylic acids</topic><topic>Chemical compounds</topic><topic>Coatings</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Desorption</topic><topic>Edetic acid</topic><topic>Electron microscopy</topic><topic>Ethylenediaminetetraacetic acids</topic><topic>Fibrinogen</topic><topic>high‐throughput</topic><topic>hormones</topic><topic>IgG antibody</topic><topic>Immunoglobulin G</topic><topic>Immunoglobulins</topic><topic>Ionization</topic><topic>Lasers</topic><topic>Lysozyme</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Nitrilotriacetic acid</topic><topic>Organic chemistry</topic><topic>pesticides</topic><topic>pharmaceuticals</topic><topic>powder X‐ray diffraction</topic><topic>Proteins</topic><topic>Quadrupoles</topic><topic>Salicylic acid</topic><topic>Scanning electron microscopy</topic><topic>Scientific imaging</topic><topic>Semiconductor lasers</topic><topic>small organic molecules</topic><topic>Spectroscopy</topic><topic>stainless steel</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gravel, Alexia</creatorcontrib><creatorcontrib>Guérette, Cassandra</creatorcontrib><creatorcontrib>Fortin, Daniel</creatorcontrib><creatorcontrib>Auger, Serge</creatorcontrib><creatorcontrib>Picard, Pierre</creatorcontrib><creatorcontrib>Segura, Pedro A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mass spectrometry.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gravel, Alexia</au><au>Guérette, Cassandra</au><au>Fortin, Daniel</au><au>Auger, Serge</au><au>Picard, Pierre</au><au>Segura, Pedro A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Further studies on the signal enhancement effect in laser diode thermal desorption‐triple quadrupole mass spectrometry using microwell surface coatings</atitle><jtitle>Journal of mass spectrometry.</jtitle><addtitle>J Mass Spectrom</addtitle><date>2019-12</date><risdate>2019</risdate><volume>54</volume><issue>12</issue><spage>948</spage><epage>956</epage><pages>948-956</pages><issn>1076-5174</issn><eissn>1096-9888</eissn><abstract>The laser diode thermal desorption (LDTD) ionization source allows ultrafast and sensitive analysis of small molecules by mass spectrometry. Signal enhancement in LDTD has been observed when coating the surface of sample microwells with a solution of ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetic acid. Here we present a quantitative analysis of signal enhancement using solutions of diverse commercial proteins (lysozyme, immunoglobulin G, albumin, and fibrinogen) as coatings. Results showed that compounds with polar chemical functions such as carboxylic acid, sulfonyl, and nitro had signal enhancement factors, in most cases higher than 10, when using any of the tested proteins as coating agent. Analysis of variance revealed that immunoglobulin G and fibrinogen gave the best results. However, the signal enhancement factors obtained with these proteins were not superior to those observed with EDTA. To explain the signal enhancement effect of proteins, analysis by scanning electron microscopy of dried samples on the microwell sample plates was carried out. Images showed that salicylic acid, one of the compounds with the highest observed signal enhancement, formed a thick layer when applied directly on the uncoated surface, but it formed small crystals (&lt;1 μm) in the presence of protein or EDTA coatings. Further crystallographic studies using powder X‐ray diffraction showed that the crystalline form of salicylic acid is modified in the presence of EDTA. Salicylic acid when mixed with EDTA had a higher percentage of amorphous phase (38.1%) than without EDTA (23.1%). These results appear to confirm that the diminution of crystal size of analytes and the increase of amorphous phase are implicated in signal enhancement effect observed in LDTD using microwell surface coatings. To design better coatings and completely elucidate the signal enhancement effect in LDTD, more studies are necessary to understand the effects of coatings on the ionization of analytes.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31652386</pmid><doi>10.1002/jms.4455</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4552-4903</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1076-5174
ispartof Journal of mass spectrometry., 2019-12, Vol.54 (12), p.948-956
issn 1076-5174
1096-9888
language eng
recordid cdi_proquest_miscellaneous_2309496586
source Access via Wiley Online Library
subjects Acetic acid
Acids
Albumins
Carboxylic acids
Chemical compounds
Coatings
Crystallography
Crystals
Desorption
Edetic acid
Electron microscopy
Ethylenediaminetetraacetic acids
Fibrinogen
high‐throughput
hormones
IgG antibody
Immunoglobulin G
Immunoglobulins
Ionization
Lasers
Lysozyme
Mass spectrometry
Mass spectroscopy
Nitrilotriacetic acid
Organic chemistry
pesticides
pharmaceuticals
powder X‐ray diffraction
Proteins
Quadrupoles
Salicylic acid
Scanning electron microscopy
Scientific imaging
Semiconductor lasers
small organic molecules
Spectroscopy
stainless steel
Variance analysis
title Further studies on the signal enhancement effect in laser diode thermal desorption‐triple quadrupole mass spectrometry using microwell surface coatings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Further%20studies%20on%20the%20signal%20enhancement%20effect%20in%20laser%20diode%20thermal%20desorption%E2%80%90triple%20quadrupole%20mass%20spectrometry%20using%20microwell%20surface%20coatings&rft.jtitle=Journal%20of%20mass%20spectrometry.&rft.au=Gravel,%20Alexia&rft.date=2019-12&rft.volume=54&rft.issue=12&rft.spage=948&rft.epage=956&rft.pages=948-956&rft.issn=1076-5174&rft.eissn=1096-9888&rft_id=info:doi/10.1002/jms.4455&rft_dat=%3Cproquest_cross%3E2309496586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334104465&rft_id=info:pmid/31652386&rfr_iscdi=true