Evolutionary causes and consequences of metabolic division of labour: why anaerobes do and aerobes don’t
[Display omitted] •Catabolic division of labour is prevalent in anoxic, but not in oxic environments.•Anoxic environments are oxygen depleted because of a high influx of organic matter.•Such a high flux favours evolution of shorter, incomplete pathways.•Aerobes are complete oxidizers because low flu...
Gespeichert in:
Veröffentlicht in: | Current opinion in biotechnology 2020-04, Vol.62, p.80-87 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | |
container_start_page | 80 |
container_title | Current opinion in biotechnology |
container_volume | 62 |
creator | Kreft, Jan-Ulrich Griffin, Benjamin M González-Cabaleiro, Rebeca |
description | [Display omitted]
•Catabolic division of labour is prevalent in anoxic, but not in oxic environments.•Anoxic environments are oxygen depleted because of a high influx of organic matter.•Such a high flux favours evolution of shorter, incomplete pathways.•Aerobes are complete oxidizers because low flux, long pathways suffice and respiration makes more ATP at the end.•Bioreactors are high flux environments so microbes must be engineered to resist evolution to shorter pathways.
Metabolic division of the labour of organic matter decomposition into several steps carried out by different types of microbes is typical for many anoxic — but not oxic environments. An explanation of this well-known pattern is proposed based on the combination of three key insights: (i) well-studied anoxic environments are high flux environments: they are only anoxic because their high organic matter influx leads to oxygen depletion; (ii) shorter, incomplete catabolic pathways provide the capacity for higher flux, but this capacity is only advantageous in high flux environments; (iii) longer, complete catabolic pathways have energetic happy ends but only with high redox potential electron acceptors. Thus, aerobic environments favour longer pathways. Bioreactors, in contrast, are high flux environments and therefore favour division of catabolic labour even if aeration keeps them aerobic; therefore, host strains and feeding strategies must be carefully engineered to resist this pull. |
doi_str_mv | 10.1016/j.copbio.2019.08.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2309474608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095816691930062X</els_id><sourcerecordid>2309474608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-68037107b1fa354cfbb2a441aa474b7e55de75b6cc7ffa5d1f71c858ea18fd43</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOl7eQKRLN60n06RJXQgyeAPBjfuQK2boNGPSjrjzNXw9n8SM42XnKuTn__9zzofQMYYKA27O5pUOS-VDNQXcVsArAL6FJpiztgQybbfRBFrKS9w07R7aT2kOALRmsIv2atxQwimfoPnVKnTj4EMv42uh5ZhsKmRvCh36ZJ9H2-ssBFcs7CBV6LwujF_5lANrtcvaGM-Ll6fXnJI2BpXtJnxV_H37j7f34RDtONkle_T9HqDH66vH2W15_3BzN7u8LzUBPpQNh5phYAo7WVOinVJTSQiWkjCimKXUWEZVozVzTlKDHcM632Il5s6Q-gCdbmqXMeT90yAWPmnbdbK3YUxiWkObmxrg2Uo2Vh1DStE6sYx-kUEIDGINWczFBrJYQxbABXzFTr4njGphzW_oh2o2XGwMNp-58jaKpP2apPHR6kGY4P-f8Alg_ZKI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309474608</pqid></control><display><type>article</type><title>Evolutionary causes and consequences of metabolic division of labour: why anaerobes do and aerobes don’t</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kreft, Jan-Ulrich ; Griffin, Benjamin M ; González-Cabaleiro, Rebeca</creator><creatorcontrib>Kreft, Jan-Ulrich ; Griffin, Benjamin M ; González-Cabaleiro, Rebeca</creatorcontrib><description>[Display omitted]
•Catabolic division of labour is prevalent in anoxic, but not in oxic environments.•Anoxic environments are oxygen depleted because of a high influx of organic matter.•Such a high flux favours evolution of shorter, incomplete pathways.•Aerobes are complete oxidizers because low flux, long pathways suffice and respiration makes more ATP at the end.•Bioreactors are high flux environments so microbes must be engineered to resist evolution to shorter pathways.
Metabolic division of the labour of organic matter decomposition into several steps carried out by different types of microbes is typical for many anoxic — but not oxic environments. An explanation of this well-known pattern is proposed based on the combination of three key insights: (i) well-studied anoxic environments are high flux environments: they are only anoxic because their high organic matter influx leads to oxygen depletion; (ii) shorter, incomplete catabolic pathways provide the capacity for higher flux, but this capacity is only advantageous in high flux environments; (iii) longer, complete catabolic pathways have energetic happy ends but only with high redox potential electron acceptors. Thus, aerobic environments favour longer pathways. Bioreactors, in contrast, are high flux environments and therefore favour division of catabolic labour even if aeration keeps them aerobic; therefore, host strains and feeding strategies must be carefully engineered to resist this pull.</description><identifier>ISSN: 0958-1669</identifier><identifier>EISSN: 1879-0429</identifier><identifier>DOI: 10.1016/j.copbio.2019.08.008</identifier><identifier>PMID: 31654858</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bacteria, Aerobic ; Bacteria, Anaerobic ; Bioreactors ; Oxidation-Reduction ; Oxygen</subject><ispartof>Current opinion in biotechnology, 2020-04, Vol.62, p.80-87</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-68037107b1fa354cfbb2a441aa474b7e55de75b6cc7ffa5d1f71c858ea18fd43</citedby><cites>FETCH-LOGICAL-c408t-68037107b1fa354cfbb2a441aa474b7e55de75b6cc7ffa5d1f71c858ea18fd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.copbio.2019.08.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31654858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kreft, Jan-Ulrich</creatorcontrib><creatorcontrib>Griffin, Benjamin M</creatorcontrib><creatorcontrib>González-Cabaleiro, Rebeca</creatorcontrib><title>Evolutionary causes and consequences of metabolic division of labour: why anaerobes do and aerobes don’t</title><title>Current opinion in biotechnology</title><addtitle>Curr Opin Biotechnol</addtitle><description>[Display omitted]
•Catabolic division of labour is prevalent in anoxic, but not in oxic environments.•Anoxic environments are oxygen depleted because of a high influx of organic matter.•Such a high flux favours evolution of shorter, incomplete pathways.•Aerobes are complete oxidizers because low flux, long pathways suffice and respiration makes more ATP at the end.•Bioreactors are high flux environments so microbes must be engineered to resist evolution to shorter pathways.
Metabolic division of the labour of organic matter decomposition into several steps carried out by different types of microbes is typical for many anoxic — but not oxic environments. An explanation of this well-known pattern is proposed based on the combination of three key insights: (i) well-studied anoxic environments are high flux environments: they are only anoxic because their high organic matter influx leads to oxygen depletion; (ii) shorter, incomplete catabolic pathways provide the capacity for higher flux, but this capacity is only advantageous in high flux environments; (iii) longer, complete catabolic pathways have energetic happy ends but only with high redox potential electron acceptors. Thus, aerobic environments favour longer pathways. Bioreactors, in contrast, are high flux environments and therefore favour division of catabolic labour even if aeration keeps them aerobic; therefore, host strains and feeding strategies must be carefully engineered to resist this pull.</description><subject>Bacteria, Aerobic</subject><subject>Bacteria, Anaerobic</subject><subject>Bioreactors</subject><subject>Oxidation-Reduction</subject><subject>Oxygen</subject><issn>0958-1669</issn><issn>1879-0429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUhoMoOl7eQKRLN60n06RJXQgyeAPBjfuQK2boNGPSjrjzNXw9n8SM42XnKuTn__9zzofQMYYKA27O5pUOS-VDNQXcVsArAL6FJpiztgQybbfRBFrKS9w07R7aT2kOALRmsIv2atxQwimfoPnVKnTj4EMv42uh5ZhsKmRvCh36ZJ9H2-ssBFcs7CBV6LwujF_5lANrtcvaGM-Ll6fXnJI2BpXtJnxV_H37j7f34RDtONkle_T9HqDH66vH2W15_3BzN7u8LzUBPpQNh5phYAo7WVOinVJTSQiWkjCimKXUWEZVozVzTlKDHcM632Il5s6Q-gCdbmqXMeT90yAWPmnbdbK3YUxiWkObmxrg2Uo2Vh1DStE6sYx-kUEIDGINWczFBrJYQxbABXzFTr4njGphzW_oh2o2XGwMNp-58jaKpP2apPHR6kGY4P-f8Alg_ZKI</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Kreft, Jan-Ulrich</creator><creator>Griffin, Benjamin M</creator><creator>González-Cabaleiro, Rebeca</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202004</creationdate><title>Evolutionary causes and consequences of metabolic division of labour: why anaerobes do and aerobes don’t</title><author>Kreft, Jan-Ulrich ; Griffin, Benjamin M ; González-Cabaleiro, Rebeca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-68037107b1fa354cfbb2a441aa474b7e55de75b6cc7ffa5d1f71c858ea18fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacteria, Aerobic</topic><topic>Bacteria, Anaerobic</topic><topic>Bioreactors</topic><topic>Oxidation-Reduction</topic><topic>Oxygen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreft, Jan-Ulrich</creatorcontrib><creatorcontrib>Griffin, Benjamin M</creatorcontrib><creatorcontrib>González-Cabaleiro, Rebeca</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreft, Jan-Ulrich</au><au>Griffin, Benjamin M</au><au>González-Cabaleiro, Rebeca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary causes and consequences of metabolic division of labour: why anaerobes do and aerobes don’t</atitle><jtitle>Current opinion in biotechnology</jtitle><addtitle>Curr Opin Biotechnol</addtitle><date>2020-04</date><risdate>2020</risdate><volume>62</volume><spage>80</spage><epage>87</epage><pages>80-87</pages><issn>0958-1669</issn><eissn>1879-0429</eissn><abstract>[Display omitted]
•Catabolic division of labour is prevalent in anoxic, but not in oxic environments.•Anoxic environments are oxygen depleted because of a high influx of organic matter.•Such a high flux favours evolution of shorter, incomplete pathways.•Aerobes are complete oxidizers because low flux, long pathways suffice and respiration makes more ATP at the end.•Bioreactors are high flux environments so microbes must be engineered to resist evolution to shorter pathways.
Metabolic division of the labour of organic matter decomposition into several steps carried out by different types of microbes is typical for many anoxic — but not oxic environments. An explanation of this well-known pattern is proposed based on the combination of three key insights: (i) well-studied anoxic environments are high flux environments: they are only anoxic because their high organic matter influx leads to oxygen depletion; (ii) shorter, incomplete catabolic pathways provide the capacity for higher flux, but this capacity is only advantageous in high flux environments; (iii) longer, complete catabolic pathways have energetic happy ends but only with high redox potential electron acceptors. Thus, aerobic environments favour longer pathways. Bioreactors, in contrast, are high flux environments and therefore favour division of catabolic labour even if aeration keeps them aerobic; therefore, host strains and feeding strategies must be carefully engineered to resist this pull.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31654858</pmid><doi>10.1016/j.copbio.2019.08.008</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0958-1669 |
ispartof | Current opinion in biotechnology, 2020-04, Vol.62, p.80-87 |
issn | 0958-1669 1879-0429 |
language | eng |
recordid | cdi_proquest_miscellaneous_2309474608 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Bacteria, Aerobic Bacteria, Anaerobic Bioreactors Oxidation-Reduction Oxygen |
title | Evolutionary causes and consequences of metabolic division of labour: why anaerobes do and aerobes don’t |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20causes%20and%20consequences%20of%20metabolic%20division%20of%20labour:%20why%20anaerobes%20do%20and%20aerobes%20don%E2%80%99t&rft.jtitle=Current%20opinion%20in%20biotechnology&rft.au=Kreft,%20Jan-Ulrich&rft.date=2020-04&rft.volume=62&rft.spage=80&rft.epage=87&rft.pages=80-87&rft.issn=0958-1669&rft.eissn=1879-0429&rft_id=info:doi/10.1016/j.copbio.2019.08.008&rft_dat=%3Cproquest_cross%3E2309474608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309474608&rft_id=info:pmid/31654858&rft_els_id=S095816691930062X&rfr_iscdi=true |