Electrochemical Behavior of Carbon Electrodes for In Situ Redox Studies in a Transmission Electron Microscope
Electrochemical liquid cell transmission electron microscopy (TEM) is a unique technique for probing nanocatalyst behavior during operation for a range of different electrocatalytic processes, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (OR...
Gespeichert in:
Veröffentlicht in: | Microscopy and microanalysis 2019-12, Vol.25 (6), p.1304-1310 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1310 |
---|---|
container_issue | 6 |
container_start_page | 1304 |
container_title | Microscopy and microanalysis |
container_volume | 25 |
creator | Girod, Robin Nianias, Nikolaos Tileli, Vasiliki |
description | Electrochemical liquid cell transmission electron microscopy (TEM) is a unique technique for probing nanocatalyst behavior during operation for a range of different electrocatalytic processes, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), or electrochemical CO2 reduction (eCO2R). A major challenge to the technique's applicability to these systems has to do with the choice of substrate, which requires a wide inert potential range for quantitative electrochemistry, and is also responsible for minimizing background gas generation in the confined microscale environment. Here, we report on the feasibility of electrochemical experiments using the standard redox couple Fe(CN)63-/4- and microchips featuring carbon-coated electrodes. We electrochemically assess the in situ performance with respect to flow rate, liquid volume, and scan rate. Equally important with the choice of working substrate is the choice of the reference electrode. We demonstrate that the use of a modified electrode setup allows for potential measurements relatable to bulk studies. Furthermore, we use this setup to demonstrate the inert potential range for carbon-coated electrodes in aqueous electrolytes for HER, OER, ORR, and eCO2R. This work provides a basis for understanding electrochemical measurements in similar microscale systems and for studying gas-generating reactions with liquid electrochemical TEM. |
doi_str_mv | 10.1017/S1431927619015034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2308521518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353061688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-36ef198ed85a24337f36b4cab5f618363c267f650319c04f800615b02f2d42113</originalsourceid><addsrcrecordid>eNplkU9LxDAQxYMouq5-AC8S8OKlmkmatD3qsv6BFcFdzyVNEzbSNmvSin57s-6qoKcJ837vMZNB6ATIBRDILueQMihoJqAgwAlLd9AotniSA_Ddrzcka_0AHYbwQghhJBP76ICBSDOSihFqp41WvXdqqVurZIOv9VK-WeexM3gifeU6vEVqHbCJwn2H57Yf8JOu3Tue90Nto2I7LPHCyy60NgT7a-vwg1XeBeVW-gjtGdkEfbytY_R8M11M7pLZ4-395GqWKEaLPmFCGyhyXedc0pSxzDBRpUpW3AjImWCKisyIuDEUiqQmJ0QArwg1tE4pABuj803uyrvXQYe-jEMp3TSy024IJWUk5xR4DBujsz_oixt8F6eLFGcxWORrCjbUepPgtSlX3rbSf5RAyvUtyn-3iJ7TbfJQtbr-cXx_PvsE9VyCYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353061688</pqid></control><display><type>article</type><title>Electrochemical Behavior of Carbon Electrodes for In Situ Redox Studies in a Transmission Electron Microscope</title><source>Cambridge University Press Journals Complete</source><creator>Girod, Robin ; Nianias, Nikolaos ; Tileli, Vasiliki</creator><creatorcontrib>Girod, Robin ; Nianias, Nikolaos ; Tileli, Vasiliki</creatorcontrib><description>Electrochemical liquid cell transmission electron microscopy (TEM) is a unique technique for probing nanocatalyst behavior during operation for a range of different electrocatalytic processes, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), or electrochemical CO2 reduction (eCO2R). A major challenge to the technique's applicability to these systems has to do with the choice of substrate, which requires a wide inert potential range for quantitative electrochemistry, and is also responsible for minimizing background gas generation in the confined microscale environment. Here, we report on the feasibility of electrochemical experiments using the standard redox couple Fe(CN)63-/4- and microchips featuring carbon-coated electrodes. We electrochemically assess the in situ performance with respect to flow rate, liquid volume, and scan rate. Equally important with the choice of working substrate is the choice of the reference electrode. We demonstrate that the use of a modified electrode setup allows for potential measurements relatable to bulk studies. Furthermore, we use this setup to demonstrate the inert potential range for carbon-coated electrodes in aqueous electrolytes for HER, OER, ORR, and eCO2R. This work provides a basis for understanding electrochemical measurements in similar microscale systems and for studying gas-generating reactions with liquid electrochemical TEM.</description><identifier>ISSN: 1431-9276</identifier><identifier>EISSN: 1435-8115</identifier><identifier>DOI: 10.1017/S1431927619015034</identifier><identifier>PMID: 31647046</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Aqueous electrolytes ; Carbon ; Carbon dioxide ; Catalysis ; Chemical reduction ; Coated electrodes ; Electrochemical analysis ; Electrochemistry ; Electrodes ; Electrolytes ; Experiments ; Flow rates ; Flow velocity ; Hydrogen evolution reactions ; Integrated circuits ; Oxygen ; Oxygen evolution reactions ; Oxygen reduction reactions ; Semiconductors ; Substrates ; Transmission electron microscopy ; Voltammetry</subject><ispartof>Microscopy and microanalysis, 2019-12, Vol.25 (6), p.1304-1310</ispartof><rights>Copyright © Microscopy Society of America 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-36ef198ed85a24337f36b4cab5f618363c267f650319c04f800615b02f2d42113</citedby><cites>FETCH-LOGICAL-c329t-36ef198ed85a24337f36b4cab5f618363c267f650319c04f800615b02f2d42113</cites><orcidid>0000-0002-0520-6900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31647046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Girod, Robin</creatorcontrib><creatorcontrib>Nianias, Nikolaos</creatorcontrib><creatorcontrib>Tileli, Vasiliki</creatorcontrib><title>Electrochemical Behavior of Carbon Electrodes for In Situ Redox Studies in a Transmission Electron Microscope</title><title>Microscopy and microanalysis</title><addtitle>Microsc Microanal</addtitle><description>Electrochemical liquid cell transmission electron microscopy (TEM) is a unique technique for probing nanocatalyst behavior during operation for a range of different electrocatalytic processes, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), or electrochemical CO2 reduction (eCO2R). A major challenge to the technique's applicability to these systems has to do with the choice of substrate, which requires a wide inert potential range for quantitative electrochemistry, and is also responsible for minimizing background gas generation in the confined microscale environment. Here, we report on the feasibility of electrochemical experiments using the standard redox couple Fe(CN)63-/4- and microchips featuring carbon-coated electrodes. We electrochemically assess the in situ performance with respect to flow rate, liquid volume, and scan rate. Equally important with the choice of working substrate is the choice of the reference electrode. We demonstrate that the use of a modified electrode setup allows for potential measurements relatable to bulk studies. Furthermore, we use this setup to demonstrate the inert potential range for carbon-coated electrodes in aqueous electrolytes for HER, OER, ORR, and eCO2R. This work provides a basis for understanding electrochemical measurements in similar microscale systems and for studying gas-generating reactions with liquid electrochemical TEM.</description><subject>Aqueous electrolytes</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Chemical reduction</subject><subject>Coated electrodes</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Experiments</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Hydrogen evolution reactions</subject><subject>Integrated circuits</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Semiconductors</subject><subject>Substrates</subject><subject>Transmission electron microscopy</subject><subject>Voltammetry</subject><issn>1431-9276</issn><issn>1435-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU9LxDAQxYMouq5-AC8S8OKlmkmatD3qsv6BFcFdzyVNEzbSNmvSin57s-6qoKcJ837vMZNB6ATIBRDILueQMihoJqAgwAlLd9AotniSA_Ddrzcka_0AHYbwQghhJBP76ICBSDOSihFqp41WvXdqqVurZIOv9VK-WeexM3gifeU6vEVqHbCJwn2H57Yf8JOu3Tue90Nto2I7LPHCyy60NgT7a-vwg1XeBeVW-gjtGdkEfbytY_R8M11M7pLZ4-395GqWKEaLPmFCGyhyXedc0pSxzDBRpUpW3AjImWCKisyIuDEUiqQmJ0QArwg1tE4pABuj803uyrvXQYe-jEMp3TSy024IJWUk5xR4DBujsz_oixt8F6eLFGcxWORrCjbUepPgtSlX3rbSf5RAyvUtyn-3iJ7TbfJQtbr-cXx_PvsE9VyCYQ</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Girod, Robin</creator><creator>Nianias, Nikolaos</creator><creator>Tileli, Vasiliki</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0520-6900</orcidid></search><sort><creationdate>201912</creationdate><title>Electrochemical Behavior of Carbon Electrodes for In Situ Redox Studies in a Transmission Electron Microscope</title><author>Girod, Robin ; Nianias, Nikolaos ; Tileli, Vasiliki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-36ef198ed85a24337f36b4cab5f618363c267f650319c04f800615b02f2d42113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aqueous electrolytes</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Chemical reduction</topic><topic>Coated electrodes</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Experiments</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Hydrogen evolution reactions</topic><topic>Integrated circuits</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Semiconductors</topic><topic>Substrates</topic><topic>Transmission electron microscopy</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Girod, Robin</creatorcontrib><creatorcontrib>Nianias, Nikolaos</creatorcontrib><creatorcontrib>Tileli, Vasiliki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy and microanalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Girod, Robin</au><au>Nianias, Nikolaos</au><au>Tileli, Vasiliki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Behavior of Carbon Electrodes for In Situ Redox Studies in a Transmission Electron Microscope</atitle><jtitle>Microscopy and microanalysis</jtitle><addtitle>Microsc Microanal</addtitle><date>2019-12</date><risdate>2019</risdate><volume>25</volume><issue>6</issue><spage>1304</spage><epage>1310</epage><pages>1304-1310</pages><issn>1431-9276</issn><eissn>1435-8115</eissn><abstract>Electrochemical liquid cell transmission electron microscopy (TEM) is a unique technique for probing nanocatalyst behavior during operation for a range of different electrocatalytic processes, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), or electrochemical CO2 reduction (eCO2R). A major challenge to the technique's applicability to these systems has to do with the choice of substrate, which requires a wide inert potential range for quantitative electrochemistry, and is also responsible for minimizing background gas generation in the confined microscale environment. Here, we report on the feasibility of electrochemical experiments using the standard redox couple Fe(CN)63-/4- and microchips featuring carbon-coated electrodes. We electrochemically assess the in situ performance with respect to flow rate, liquid volume, and scan rate. Equally important with the choice of working substrate is the choice of the reference electrode. We demonstrate that the use of a modified electrode setup allows for potential measurements relatable to bulk studies. Furthermore, we use this setup to demonstrate the inert potential range for carbon-coated electrodes in aqueous electrolytes for HER, OER, ORR, and eCO2R. This work provides a basis for understanding electrochemical measurements in similar microscale systems and for studying gas-generating reactions with liquid electrochemical TEM.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>31647046</pmid><doi>10.1017/S1431927619015034</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0520-6900</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-9276 |
ispartof | Microscopy and microanalysis, 2019-12, Vol.25 (6), p.1304-1310 |
issn | 1431-9276 1435-8115 |
language | eng |
recordid | cdi_proquest_miscellaneous_2308521518 |
source | Cambridge University Press Journals Complete |
subjects | Aqueous electrolytes Carbon Carbon dioxide Catalysis Chemical reduction Coated electrodes Electrochemical analysis Electrochemistry Electrodes Electrolytes Experiments Flow rates Flow velocity Hydrogen evolution reactions Integrated circuits Oxygen Oxygen evolution reactions Oxygen reduction reactions Semiconductors Substrates Transmission electron microscopy Voltammetry |
title | Electrochemical Behavior of Carbon Electrodes for In Situ Redox Studies in a Transmission Electron Microscope |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Behavior%20of%20Carbon%20Electrodes%20for%20In%20Situ%20Redox%20Studies%20in%20a%20Transmission%20Electron%20Microscope&rft.jtitle=Microscopy%20and%20microanalysis&rft.au=Girod,%20Robin&rft.date=2019-12&rft.volume=25&rft.issue=6&rft.spage=1304&rft.epage=1310&rft.pages=1304-1310&rft.issn=1431-9276&rft.eissn=1435-8115&rft_id=info:doi/10.1017/S1431927619015034&rft_dat=%3Cproquest_cross%3E2353061688%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353061688&rft_id=info:pmid/31647046&rfr_iscdi=true |