Tandem Hydrogenolysis–Hydrogenation of Lignin‐Derived Oxygenates over Integrated Dual Catalysts with Optimized Interoperations

The efficient hydrodeoxygenation (HDO) of lignin‐derived oxygenates is essential but challenging owing to the inherent complexity of feedstock and the lack of effective catalytic approaches. A catalytic strategy has been developed that separates C−O hydrogenolysis and aromatic hydrogenation on diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2019-12, Vol.12 (23), p.5199-5206
Hauptverfasser: Fang, Huihuang, Chen, Weikun, Li, Shuang, Li, Xuehui, Duan, Xinping, Ye, Linmin, Yuan, Youzhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5206
container_issue 23
container_start_page 5199
container_title ChemSusChem
container_volume 12
creator Fang, Huihuang
Chen, Weikun
Li, Shuang
Li, Xuehui
Duan, Xinping
Ye, Linmin
Yuan, Youzhu
description The efficient hydrodeoxygenation (HDO) of lignin‐derived oxygenates is essential but challenging owing to the inherent complexity of feedstock and the lack of effective catalytic approaches. A catalytic strategy has been developed that separates C−O hydrogenolysis and aromatic hydrogenation on different active catalysts with interoperation that can achieve high oxygen removal in lignin‐derived oxygenates. The flexible use of tungsten carbide for C−O bond cleavage and a nickel catalyst with controlled particle size for arene hydrogenation enables the tunable production of cyclohexane and cyclohexanol with almost full conversion of guaiacol. Such integration of dual catalysts in close proximity enables superior HDO of bio‐oils into liquid alkanes with high mass and carbon yields of 27.9 and 45.0 wt %, respectively. This finding provides a new effective strategy for practical applications. Dual cooperation: Hydrodeoxygenation of lignin‐derived oxygenates and bio‐oil can be effectively achieved by tandem hydrogenolysis–hydrogenation, whereby tungsten carbide effects C−O bond hydrogenolysis and Ni is mainly responsible for arene hydrogenation. Product distribution can be tuned by flexible integration of the active catalysts. A total mass and carbon yield of 27.9 and 45.0 wt %, respectively, are obtained by conversion of the bio‐oil.
doi_str_mv 10.1002/cssc.201902029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2308518052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322060147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4109-2238b9d0e3f5b3bdc6c03cbb975b5b292b7068425091e837e23b47a9a19bf5d53</originalsourceid><addsrcrecordid>eNqFkcFO3DAQhq2qqFDaa4-VpV647DK24yQ-VoEC0kp7gEq9RXYy2Rol8dZOgPSEeIJKfUOepF4WtlIvPXns-ebTyD8hHxjMGQA_rkKo5hyYAg5cvSIHLE-TmUyTb693tWD75G0I1wApqDR9Q_YFS5OM5eKAPFzpvsaOnk-1dyvsXTsFGx7vf7886MG6nrqGLuyqt_3j_a8T9PYGa7q8m576GKi7QU8v-gFXPt5rejLqlhZ60NE2BHprh-90uR5sZ3_G7gb0bo3-yR3ekb1GtwHfP5-H5OuX06vifLZYnl0UnxezKmGgZpyL3KgaUDTSCFNXaQWiMkZl0kjDFTcZpHnCJSiGuciQC5NkWmmmTCNrKQ7J0da79u7HiGEoOxsqbFvdoxtDyQXkkuUgeUQ__YNeu9H3cbtIcR7_kSVZpOZbqvIuBI9Nufa2034qGZSbdMpNOuUunTjw8Vk7mg7rHf4SRwTUFri1LU7_0ZXF5WXxV_4HQUCgIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322060147</pqid></control><display><type>article</type><title>Tandem Hydrogenolysis–Hydrogenation of Lignin‐Derived Oxygenates over Integrated Dual Catalysts with Optimized Interoperations</title><source>Access via Wiley Online Library</source><creator>Fang, Huihuang ; Chen, Weikun ; Li, Shuang ; Li, Xuehui ; Duan, Xinping ; Ye, Linmin ; Yuan, Youzhu</creator><creatorcontrib>Fang, Huihuang ; Chen, Weikun ; Li, Shuang ; Li, Xuehui ; Duan, Xinping ; Ye, Linmin ; Yuan, Youzhu</creatorcontrib><description>The efficient hydrodeoxygenation (HDO) of lignin‐derived oxygenates is essential but challenging owing to the inherent complexity of feedstock and the lack of effective catalytic approaches. A catalytic strategy has been developed that separates C−O hydrogenolysis and aromatic hydrogenation on different active catalysts with interoperation that can achieve high oxygen removal in lignin‐derived oxygenates. The flexible use of tungsten carbide for C−O bond cleavage and a nickel catalyst with controlled particle size for arene hydrogenation enables the tunable production of cyclohexane and cyclohexanol with almost full conversion of guaiacol. Such integration of dual catalysts in close proximity enables superior HDO of bio‐oils into liquid alkanes with high mass and carbon yields of 27.9 and 45.0 wt %, respectively. This finding provides a new effective strategy for practical applications. Dual cooperation: Hydrodeoxygenation of lignin‐derived oxygenates and bio‐oil can be effectively achieved by tandem hydrogenolysis–hydrogenation, whereby tungsten carbide effects C−O bond hydrogenolysis and Ni is mainly responsible for arene hydrogenation. Product distribution can be tuned by flexible integration of the active catalysts. A total mass and carbon yield of 27.9 and 45.0 wt %, respectively, are obtained by conversion of the bio‐oil.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201902029</identifier><identifier>PMID: 31647183</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alkanes ; biomass ; Catalysts ; Cyclohexane ; heterogeneous catalysis ; hydrodeoxygenation ; Hydrogenation ; Hydrogenolysis ; Lignin ; nickel ; Tungsten carbide</subject><ispartof>ChemSusChem, 2019-12, Vol.12 (23), p.5199-5206</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4109-2238b9d0e3f5b3bdc6c03cbb975b5b292b7068425091e837e23b47a9a19bf5d53</citedby><cites>FETCH-LOGICAL-c4109-2238b9d0e3f5b3bdc6c03cbb975b5b292b7068425091e837e23b47a9a19bf5d53</cites><orcidid>0000-0003-1668-9984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201902029$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201902029$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31647183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Huihuang</creatorcontrib><creatorcontrib>Chen, Weikun</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Li, Xuehui</creatorcontrib><creatorcontrib>Duan, Xinping</creatorcontrib><creatorcontrib>Ye, Linmin</creatorcontrib><creatorcontrib>Yuan, Youzhu</creatorcontrib><title>Tandem Hydrogenolysis–Hydrogenation of Lignin‐Derived Oxygenates over Integrated Dual Catalysts with Optimized Interoperations</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>The efficient hydrodeoxygenation (HDO) of lignin‐derived oxygenates is essential but challenging owing to the inherent complexity of feedstock and the lack of effective catalytic approaches. A catalytic strategy has been developed that separates C−O hydrogenolysis and aromatic hydrogenation on different active catalysts with interoperation that can achieve high oxygen removal in lignin‐derived oxygenates. The flexible use of tungsten carbide for C−O bond cleavage and a nickel catalyst with controlled particle size for arene hydrogenation enables the tunable production of cyclohexane and cyclohexanol with almost full conversion of guaiacol. Such integration of dual catalysts in close proximity enables superior HDO of bio‐oils into liquid alkanes with high mass and carbon yields of 27.9 and 45.0 wt %, respectively. This finding provides a new effective strategy for practical applications. Dual cooperation: Hydrodeoxygenation of lignin‐derived oxygenates and bio‐oil can be effectively achieved by tandem hydrogenolysis–hydrogenation, whereby tungsten carbide effects C−O bond hydrogenolysis and Ni is mainly responsible for arene hydrogenation. Product distribution can be tuned by flexible integration of the active catalysts. A total mass and carbon yield of 27.9 and 45.0 wt %, respectively, are obtained by conversion of the bio‐oil.</description><subject>Alkanes</subject><subject>biomass</subject><subject>Catalysts</subject><subject>Cyclohexane</subject><subject>heterogeneous catalysis</subject><subject>hydrodeoxygenation</subject><subject>Hydrogenation</subject><subject>Hydrogenolysis</subject><subject>Lignin</subject><subject>nickel</subject><subject>Tungsten carbide</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkcFO3DAQhq2qqFDaa4-VpV647DK24yQ-VoEC0kp7gEq9RXYy2Rol8dZOgPSEeIJKfUOepF4WtlIvPXns-ebTyD8hHxjMGQA_rkKo5hyYAg5cvSIHLE-TmUyTb693tWD75G0I1wApqDR9Q_YFS5OM5eKAPFzpvsaOnk-1dyvsXTsFGx7vf7886MG6nrqGLuyqt_3j_a8T9PYGa7q8m576GKi7QU8v-gFXPt5rejLqlhZ60NE2BHprh-90uR5sZ3_G7gb0bo3-yR3ekb1GtwHfP5-H5OuX06vifLZYnl0UnxezKmGgZpyL3KgaUDTSCFNXaQWiMkZl0kjDFTcZpHnCJSiGuciQC5NkWmmmTCNrKQ7J0da79u7HiGEoOxsqbFvdoxtDyQXkkuUgeUQ__YNeu9H3cbtIcR7_kSVZpOZbqvIuBI9Nufa2034qGZSbdMpNOuUunTjw8Vk7mg7rHf4SRwTUFri1LU7_0ZXF5WXxV_4HQUCgIQ</recordid><startdate>20191206</startdate><enddate>20191206</enddate><creator>Fang, Huihuang</creator><creator>Chen, Weikun</creator><creator>Li, Shuang</creator><creator>Li, Xuehui</creator><creator>Duan, Xinping</creator><creator>Ye, Linmin</creator><creator>Yuan, Youzhu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1668-9984</orcidid></search><sort><creationdate>20191206</creationdate><title>Tandem Hydrogenolysis–Hydrogenation of Lignin‐Derived Oxygenates over Integrated Dual Catalysts with Optimized Interoperations</title><author>Fang, Huihuang ; Chen, Weikun ; Li, Shuang ; Li, Xuehui ; Duan, Xinping ; Ye, Linmin ; Yuan, Youzhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4109-2238b9d0e3f5b3bdc6c03cbb975b5b292b7068425091e837e23b47a9a19bf5d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkanes</topic><topic>biomass</topic><topic>Catalysts</topic><topic>Cyclohexane</topic><topic>heterogeneous catalysis</topic><topic>hydrodeoxygenation</topic><topic>Hydrogenation</topic><topic>Hydrogenolysis</topic><topic>Lignin</topic><topic>nickel</topic><topic>Tungsten carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Huihuang</creatorcontrib><creatorcontrib>Chen, Weikun</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Li, Xuehui</creatorcontrib><creatorcontrib>Duan, Xinping</creatorcontrib><creatorcontrib>Ye, Linmin</creatorcontrib><creatorcontrib>Yuan, Youzhu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Huihuang</au><au>Chen, Weikun</au><au>Li, Shuang</au><au>Li, Xuehui</au><au>Duan, Xinping</au><au>Ye, Linmin</au><au>Yuan, Youzhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tandem Hydrogenolysis–Hydrogenation of Lignin‐Derived Oxygenates over Integrated Dual Catalysts with Optimized Interoperations</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2019-12-06</date><risdate>2019</risdate><volume>12</volume><issue>23</issue><spage>5199</spage><epage>5206</epage><pages>5199-5206</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>The efficient hydrodeoxygenation (HDO) of lignin‐derived oxygenates is essential but challenging owing to the inherent complexity of feedstock and the lack of effective catalytic approaches. A catalytic strategy has been developed that separates C−O hydrogenolysis and aromatic hydrogenation on different active catalysts with interoperation that can achieve high oxygen removal in lignin‐derived oxygenates. The flexible use of tungsten carbide for C−O bond cleavage and a nickel catalyst with controlled particle size for arene hydrogenation enables the tunable production of cyclohexane and cyclohexanol with almost full conversion of guaiacol. Such integration of dual catalysts in close proximity enables superior HDO of bio‐oils into liquid alkanes with high mass and carbon yields of 27.9 and 45.0 wt %, respectively. This finding provides a new effective strategy for practical applications. Dual cooperation: Hydrodeoxygenation of lignin‐derived oxygenates and bio‐oil can be effectively achieved by tandem hydrogenolysis–hydrogenation, whereby tungsten carbide effects C−O bond hydrogenolysis and Ni is mainly responsible for arene hydrogenation. Product distribution can be tuned by flexible integration of the active catalysts. A total mass and carbon yield of 27.9 and 45.0 wt %, respectively, are obtained by conversion of the bio‐oil.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31647183</pmid><doi>10.1002/cssc.201902029</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1668-9984</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2019-12, Vol.12 (23), p.5199-5206
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_2308518052
source Access via Wiley Online Library
subjects Alkanes
biomass
Catalysts
Cyclohexane
heterogeneous catalysis
hydrodeoxygenation
Hydrogenation
Hydrogenolysis
Lignin
nickel
Tungsten carbide
title Tandem Hydrogenolysis–Hydrogenation of Lignin‐Derived Oxygenates over Integrated Dual Catalysts with Optimized Interoperations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T00%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tandem%20Hydrogenolysis%E2%80%93Hydrogenation%20of%20Lignin%E2%80%90Derived%20Oxygenates%20over%20Integrated%20Dual%20Catalysts%20with%20Optimized%20Interoperations&rft.jtitle=ChemSusChem&rft.au=Fang,%20Huihuang&rft.date=2019-12-06&rft.volume=12&rft.issue=23&rft.spage=5199&rft.epage=5206&rft.pages=5199-5206&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201902029&rft_dat=%3Cproquest_cross%3E2322060147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322060147&rft_id=info:pmid/31647183&rfr_iscdi=true