Finite element methods for an optimal steady-state control problem
An optimal steady‐state control problem governed by an elliptic state equation is solved by several finite element methods. Finite element discretizations are applied to different variational formulations of the problem yielding accurate numerical results as compared with the given analytical soluti...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 1978, Vol.12 (9), p.1375-1382 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1382 |
---|---|
container_issue | 9 |
container_start_page | 1375 |
container_title | International journal for numerical methods in engineering |
container_volume | 12 |
creator | Meric, R. A. |
description | An optimal steady‐state control problem governed by an elliptic state equation is solved by several finite element methods. Finite element discretizations are applied to different variational formulations of the problem yielding accurate numerical results as compared with the given analytical solution. It is sated that, for minimum computational effort and high accuracy, ‘mixed’ finite elements requiring only C° continuity, and approximating the control and state functions simultaneously are better suited to similar ‘fourth order’ problems. |
doi_str_mv | 10.1002/nme.1620120906 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23070608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23070608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3566-2a1ac15af4ef63d01765c0b1821c02ed44335e5c48065499e317c703aef03ccb3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQC0EEqWwMmdiSznbsZ2MtNCCKOVDICQWy3UuIpCPYqeC_nuMgkBMTLe8d6d7hBxSGFEAdtzUOKKSAWWQgdwiAwqZioGB2iaDAGSxyFK6S_a8fwGgVAAfkPG0bMoOI6ywxqaLauye29xHResi00TtqitrU0W-Q5NvYt-ZwNq26VxbRSvXLoO2T3YKU3k8-J5D8jA9u5-cx_Pr2cXkZB5bLqSMmaHGUmGKBAvJc6BKCgtLmjJqgWGeJJwLFDZJQYoky5BTZRVwgwVwa5d8SI76veHu2xp9p-vSW6wq02C79ppxUCAhDeCoB61rvXdY6JULX7iNpqC_UumQSv-mCkLWC-9lhZt_aL24Ovvjxr1bhkYfP65xr1oqroR-XMz04unyNjkd3-g7_glByHvR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23070608</pqid></control><display><type>article</type><title>Finite element methods for an optimal steady-state control problem</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Meric, R. A.</creator><creatorcontrib>Meric, R. A.</creatorcontrib><description>An optimal steady‐state control problem governed by an elliptic state equation is solved by several finite element methods. Finite element discretizations are applied to different variational formulations of the problem yielding accurate numerical results as compared with the given analytical solution. It is sated that, for minimum computational effort and high accuracy, ‘mixed’ finite elements requiring only C° continuity, and approximating the control and state functions simultaneously are better suited to similar ‘fourth order’ problems.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1620120906</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Ltd</publisher><ispartof>International journal for numerical methods in engineering, 1978, Vol.12 (9), p.1375-1382</ispartof><rights>Copyright © 1978 John Wiley & Sons, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3566-2a1ac15af4ef63d01765c0b1821c02ed44335e5c48065499e317c703aef03ccb3</citedby><cites>FETCH-LOGICAL-c3566-2a1ac15af4ef63d01765c0b1821c02ed44335e5c48065499e317c703aef03ccb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.1620120906$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.1620120906$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4009,27902,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Meric, R. A.</creatorcontrib><title>Finite element methods for an optimal steady-state control problem</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>An optimal steady‐state control problem governed by an elliptic state equation is solved by several finite element methods. Finite element discretizations are applied to different variational formulations of the problem yielding accurate numerical results as compared with the given analytical solution. It is sated that, for minimum computational effort and high accuracy, ‘mixed’ finite elements requiring only C° continuity, and approximating the control and state functions simultaneously are better suited to similar ‘fourth order’ problems.</description><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1978</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQQC0EEqWwMmdiSznbsZ2MtNCCKOVDICQWy3UuIpCPYqeC_nuMgkBMTLe8d6d7hBxSGFEAdtzUOKKSAWWQgdwiAwqZioGB2iaDAGSxyFK6S_a8fwGgVAAfkPG0bMoOI6ywxqaLauye29xHResi00TtqitrU0W-Q5NvYt-ZwNq26VxbRSvXLoO2T3YKU3k8-J5D8jA9u5-cx_Pr2cXkZB5bLqSMmaHGUmGKBAvJc6BKCgtLmjJqgWGeJJwLFDZJQYoky5BTZRVwgwVwa5d8SI76veHu2xp9p-vSW6wq02C79ppxUCAhDeCoB61rvXdY6JULX7iNpqC_UumQSv-mCkLWC-9lhZt_aL24Ovvjxr1bhkYfP65xr1oqroR-XMz04unyNjkd3-g7_glByHvR</recordid><startdate>1978</startdate><enddate>1978</enddate><creator>Meric, R. A.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>1978</creationdate><title>Finite element methods for an optimal steady-state control problem</title><author>Meric, R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3566-2a1ac15af4ef63d01765c0b1821c02ed44335e5c48065499e317c703aef03ccb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1978</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meric, R. A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meric, R. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element methods for an optimal steady-state control problem</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>1978</date><risdate>1978</risdate><volume>12</volume><issue>9</issue><spage>1375</spage><epage>1382</epage><pages>1375-1382</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>An optimal steady‐state control problem governed by an elliptic state equation is solved by several finite element methods. Finite element discretizations are applied to different variational formulations of the problem yielding accurate numerical results as compared with the given analytical solution. It is sated that, for minimum computational effort and high accuracy, ‘mixed’ finite elements requiring only C° continuity, and approximating the control and state functions simultaneously are better suited to similar ‘fourth order’ problems.</abstract><cop>New York</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.1620120906</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 1978, Vol.12 (9), p.1375-1382 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_23070608 |
source | Wiley Online Library Journals Frontfile Complete |
title | Finite element methods for an optimal steady-state control problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20methods%20for%20an%20optimal%20steady-state%20control%20problem&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Meric,%20R.%20A.&rft.date=1978&rft.volume=12&rft.issue=9&rft.spage=1375&rft.epage=1382&rft.pages=1375-1382&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.1620120906&rft_dat=%3Cproquest_cross%3E23070608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23070608&rft_id=info:pmid/&rfr_iscdi=true |