Finite element methods for an optimal steady-state control problem

An optimal steady‐state control problem governed by an elliptic state equation is solved by several finite element methods. Finite element discretizations are applied to different variational formulations of the problem yielding accurate numerical results as compared with the given analytical soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 1978, Vol.12 (9), p.1375-1382
1. Verfasser: Meric, R. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1382
container_issue 9
container_start_page 1375
container_title International journal for numerical methods in engineering
container_volume 12
creator Meric, R. A.
description An optimal steady‐state control problem governed by an elliptic state equation is solved by several finite element methods. Finite element discretizations are applied to different variational formulations of the problem yielding accurate numerical results as compared with the given analytical solution. It is sated that, for minimum computational effort and high accuracy, ‘mixed’ finite elements requiring only C° continuity, and approximating the control and state functions simultaneously are better suited to similar ‘fourth order’ problems.
doi_str_mv 10.1002/nme.1620120906
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23070608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23070608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3566-2a1ac15af4ef63d01765c0b1821c02ed44335e5c48065499e317c703aef03ccb3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQC0EEqWwMmdiSznbsZ2MtNCCKOVDICQWy3UuIpCPYqeC_nuMgkBMTLe8d6d7hBxSGFEAdtzUOKKSAWWQgdwiAwqZioGB2iaDAGSxyFK6S_a8fwGgVAAfkPG0bMoOI6ywxqaLauye29xHResi00TtqitrU0W-Q5NvYt-ZwNq26VxbRSvXLoO2T3YKU3k8-J5D8jA9u5-cx_Pr2cXkZB5bLqSMmaHGUmGKBAvJc6BKCgtLmjJqgWGeJJwLFDZJQYoky5BTZRVwgwVwa5d8SI76veHu2xp9p-vSW6wq02C79ppxUCAhDeCoB61rvXdY6JULX7iNpqC_UumQSv-mCkLWC-9lhZt_aL24Ovvjxr1bhkYfP65xr1oqroR-XMz04unyNjkd3-g7_glByHvR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23070608</pqid></control><display><type>article</type><title>Finite element methods for an optimal steady-state control problem</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Meric, R. A.</creator><creatorcontrib>Meric, R. A.</creatorcontrib><description>An optimal steady‐state control problem governed by an elliptic state equation is solved by several finite element methods. Finite element discretizations are applied to different variational formulations of the problem yielding accurate numerical results as compared with the given analytical solution. It is sated that, for minimum computational effort and high accuracy, ‘mixed’ finite elements requiring only C° continuity, and approximating the control and state functions simultaneously are better suited to similar ‘fourth order’ problems.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1620120906</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Ltd</publisher><ispartof>International journal for numerical methods in engineering, 1978, Vol.12 (9), p.1375-1382</ispartof><rights>Copyright © 1978 John Wiley &amp; Sons, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3566-2a1ac15af4ef63d01765c0b1821c02ed44335e5c48065499e317c703aef03ccb3</citedby><cites>FETCH-LOGICAL-c3566-2a1ac15af4ef63d01765c0b1821c02ed44335e5c48065499e317c703aef03ccb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.1620120906$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.1620120906$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4009,27902,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Meric, R. A.</creatorcontrib><title>Finite element methods for an optimal steady-state control problem</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>An optimal steady‐state control problem governed by an elliptic state equation is solved by several finite element methods. Finite element discretizations are applied to different variational formulations of the problem yielding accurate numerical results as compared with the given analytical solution. It is sated that, for minimum computational effort and high accuracy, ‘mixed’ finite elements requiring only C° continuity, and approximating the control and state functions simultaneously are better suited to similar ‘fourth order’ problems.</description><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1978</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQQC0EEqWwMmdiSznbsZ2MtNCCKOVDICQWy3UuIpCPYqeC_nuMgkBMTLe8d6d7hBxSGFEAdtzUOKKSAWWQgdwiAwqZioGB2iaDAGSxyFK6S_a8fwGgVAAfkPG0bMoOI6ywxqaLauye29xHResi00TtqitrU0W-Q5NvYt-ZwNq26VxbRSvXLoO2T3YKU3k8-J5D8jA9u5-cx_Pr2cXkZB5bLqSMmaHGUmGKBAvJc6BKCgtLmjJqgWGeJJwLFDZJQYoky5BTZRVwgwVwa5d8SI76veHu2xp9p-vSW6wq02C79ppxUCAhDeCoB61rvXdY6JULX7iNpqC_UumQSv-mCkLWC-9lhZt_aL24Ovvjxr1bhkYfP65xr1oqroR-XMz04unyNjkd3-g7_glByHvR</recordid><startdate>1978</startdate><enddate>1978</enddate><creator>Meric, R. A.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>1978</creationdate><title>Finite element methods for an optimal steady-state control problem</title><author>Meric, R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3566-2a1ac15af4ef63d01765c0b1821c02ed44335e5c48065499e317c703aef03ccb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1978</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meric, R. A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meric, R. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element methods for an optimal steady-state control problem</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>1978</date><risdate>1978</risdate><volume>12</volume><issue>9</issue><spage>1375</spage><epage>1382</epage><pages>1375-1382</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>An optimal steady‐state control problem governed by an elliptic state equation is solved by several finite element methods. Finite element discretizations are applied to different variational formulations of the problem yielding accurate numerical results as compared with the given analytical solution. It is sated that, for minimum computational effort and high accuracy, ‘mixed’ finite elements requiring only C° continuity, and approximating the control and state functions simultaneously are better suited to similar ‘fourth order’ problems.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.1620120906</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 1978, Vol.12 (9), p.1375-1382
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_23070608
source Wiley Online Library Journals Frontfile Complete
title Finite element methods for an optimal steady-state control problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20methods%20for%20an%20optimal%20steady-state%20control%20problem&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Meric,%20R.%20A.&rft.date=1978&rft.volume=12&rft.issue=9&rft.spage=1375&rft.epage=1382&rft.pages=1375-1382&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.1620120906&rft_dat=%3Cproquest_cross%3E23070608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23070608&rft_id=info:pmid/&rfr_iscdi=true