Arterial Tortuosity Syndrome: An Ascorbate Compartmentalization Disorder?

Cardiovascular disorders are the most important cause of morbidity and mortality in the Western world. Monogenic developmental disorders of the heart and vessels are highly valuable to study the physiological and pathological processes in cardiovascular system homeostasis. The arterial tortuosity sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants & redox signaling 2021-04, Vol.34 (11), p.875-889
Hauptverfasser: Boel, Annekatrien, Veszelyi, Krisztina, Németh, Csilla E, Beyens, Aude, Willaert, Andy, Coucke, Paul, Callewaert, Bert, Margittai, Éva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 889
container_issue 11
container_start_page 875
container_title Antioxidants & redox signaling
container_volume 34
creator Boel, Annekatrien
Veszelyi, Krisztina
Németh, Csilla E
Beyens, Aude
Willaert, Andy
Coucke, Paul
Callewaert, Bert
Margittai, Éva
description Cardiovascular disorders are the most important cause of morbidity and mortality in the Western world. Monogenic developmental disorders of the heart and vessels are highly valuable to study the physiological and pathological processes in cardiovascular system homeostasis. The arterial tortuosity syndrome (ATS) is a rare, autosomal recessive connective tissue disorder showing lengthening, tortuosity, and stenosis of the large arteries, with a propensity for aneurysm formation. In histopathology, it associates with fragmentation and disorganization of elastic fibers in several tissues, including the arterial wall. ATS is caused by pathogenic variants in encoding the facilitative glucose transporter (GLUT)10. Although several hypotheses have been forwarded, the molecular mechanisms linking disrupted GLUT10 activity with arterial malformations are largely unknown. The vascular and systemic manifestations and natural history of ATS patients have been largely delineated. GLUT10 was identified as an intracellular transporter of dehydroascorbic acid, which contributes to collagen and elastin cross-linking in the endoplasmic reticulum, redox homeostasis in the mitochondria, and global and gene-specific methylation/hydroxymethylation affecting epigenetic regulation in the nucleus. We revise here the current knowledge on ATS and the role of GLUT10 within the compartmentalization of ascorbate in physiological and diseased states. Centralization of clinical, treatment, and outcome data will enable better management for ATS patients. Establishment of representative animal disease models could facilitate the study of pathomechanisms underlying ATS. This might be relevant for other forms of vascular dysplasia, such as isolated aneurysm formation, hypertensive vasculopathy, and neovascularization. . 34, 875-889.
doi_str_mv 10.1089/ars.2019.7843
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2306496475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306496475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-9a235a830d183a81b7e0c11b7ae0245fc7cfb2b15aadf5aadece2d7d881c31073</originalsourceid><addsrcrecordid>eNpdkD1PwzAURS0EoqUwsqJILCwp79lJ7LCgqnxVqsRAmS3HcaRUSVxsZyi_nkQtDCzvvuHo6uoQco0wRxD5vXJ-TgHzORcJOyFTTFMec47Z6fhTFoPIkgm58H4LABQRzsmEYUaR8WxKVgsXjKtVE22sC731ddhHH_uudLY1D9GiixZeW1eoYKKlbXfKhdZ0QTX1twq17aKn2ltXGvd4Sc4q1XhzdcwZ-Xx53izf4vX762q5WMeaZRDiXFGWKsGgRMGUwIIb0DiEMkCTtNJcVwUtMFWqrMZjtKElL4VAzRA4m5G7Q-_O2a_e-CDb2mvTNKoztveSMsiSPEt4OqC3_9Ct7V03rJM0BZozijwfqPhAaWe9d6aSO1e3yu0lghwdy8GxHB3L0fHA3xxb-6I15R_9K5X9AIAYd7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502932179</pqid></control><display><type>article</type><title>Arterial Tortuosity Syndrome: An Ascorbate Compartmentalization Disorder?</title><source>Alma/SFX Local Collection</source><creator>Boel, Annekatrien ; Veszelyi, Krisztina ; Németh, Csilla E ; Beyens, Aude ; Willaert, Andy ; Coucke, Paul ; Callewaert, Bert ; Margittai, Éva</creator><creatorcontrib>Boel, Annekatrien ; Veszelyi, Krisztina ; Németh, Csilla E ; Beyens, Aude ; Willaert, Andy ; Coucke, Paul ; Callewaert, Bert ; Margittai, Éva</creatorcontrib><description>Cardiovascular disorders are the most important cause of morbidity and mortality in the Western world. Monogenic developmental disorders of the heart and vessels are highly valuable to study the physiological and pathological processes in cardiovascular system homeostasis. The arterial tortuosity syndrome (ATS) is a rare, autosomal recessive connective tissue disorder showing lengthening, tortuosity, and stenosis of the large arteries, with a propensity for aneurysm formation. In histopathology, it associates with fragmentation and disorganization of elastic fibers in several tissues, including the arterial wall. ATS is caused by pathogenic variants in encoding the facilitative glucose transporter (GLUT)10. Although several hypotheses have been forwarded, the molecular mechanisms linking disrupted GLUT10 activity with arterial malformations are largely unknown. The vascular and systemic manifestations and natural history of ATS patients have been largely delineated. GLUT10 was identified as an intracellular transporter of dehydroascorbic acid, which contributes to collagen and elastin cross-linking in the endoplasmic reticulum, redox homeostasis in the mitochondria, and global and gene-specific methylation/hydroxymethylation affecting epigenetic regulation in the nucleus. We revise here the current knowledge on ATS and the role of GLUT10 within the compartmentalization of ascorbate in physiological and diseased states. Centralization of clinical, treatment, and outcome data will enable better management for ATS patients. Establishment of representative animal disease models could facilitate the study of pathomechanisms underlying ATS. This might be relevant for other forms of vascular dysplasia, such as isolated aneurysm formation, hypertensive vasculopathy, and neovascularization. . 34, 875-889.</description><identifier>ISSN: 1523-0864</identifier><identifier>EISSN: 1557-7716</identifier><identifier>DOI: 10.1089/ars.2019.7843</identifier><identifier>PMID: 31621376</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Aneurysm ; Aneurysms ; Animal diseases ; Animal health ; Animal models ; Arteries ; Ascorbic acid ; Blood vessels ; Cardiovascular system ; Collagen ; Connective tissue diseases ; Connective tissues ; Cross-linking ; Crosslinking ; Developmental disabilities ; Disorders ; DNA methylation ; Dysplasia ; Elastin ; Endoplasmic reticulum ; Epigenetics ; Fibers ; Glucose transporter ; Hereditary diseases ; Histopathology ; Homeostasis ; Mitochondria ; Molecular modelling ; Morbidity ; Patients ; Physiology ; Stenosis ; Tortuosity ; Vascular diseases ; Vascularization</subject><ispartof>Antioxidants &amp; redox signaling, 2021-04, Vol.34 (11), p.875-889</ispartof><rights>Copyright Mary Ann Liebert, Inc. Apr 10, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-9a235a830d183a81b7e0c11b7ae0245fc7cfb2b15aadf5aadece2d7d881c31073</citedby><cites>FETCH-LOGICAL-c360t-9a235a830d183a81b7e0c11b7ae0245fc7cfb2b15aadf5aadece2d7d881c31073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31621376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boel, Annekatrien</creatorcontrib><creatorcontrib>Veszelyi, Krisztina</creatorcontrib><creatorcontrib>Németh, Csilla E</creatorcontrib><creatorcontrib>Beyens, Aude</creatorcontrib><creatorcontrib>Willaert, Andy</creatorcontrib><creatorcontrib>Coucke, Paul</creatorcontrib><creatorcontrib>Callewaert, Bert</creatorcontrib><creatorcontrib>Margittai, Éva</creatorcontrib><title>Arterial Tortuosity Syndrome: An Ascorbate Compartmentalization Disorder?</title><title>Antioxidants &amp; redox signaling</title><addtitle>Antioxid Redox Signal</addtitle><description>Cardiovascular disorders are the most important cause of morbidity and mortality in the Western world. Monogenic developmental disorders of the heart and vessels are highly valuable to study the physiological and pathological processes in cardiovascular system homeostasis. The arterial tortuosity syndrome (ATS) is a rare, autosomal recessive connective tissue disorder showing lengthening, tortuosity, and stenosis of the large arteries, with a propensity for aneurysm formation. In histopathology, it associates with fragmentation and disorganization of elastic fibers in several tissues, including the arterial wall. ATS is caused by pathogenic variants in encoding the facilitative glucose transporter (GLUT)10. Although several hypotheses have been forwarded, the molecular mechanisms linking disrupted GLUT10 activity with arterial malformations are largely unknown. The vascular and systemic manifestations and natural history of ATS patients have been largely delineated. GLUT10 was identified as an intracellular transporter of dehydroascorbic acid, which contributes to collagen and elastin cross-linking in the endoplasmic reticulum, redox homeostasis in the mitochondria, and global and gene-specific methylation/hydroxymethylation affecting epigenetic regulation in the nucleus. We revise here the current knowledge on ATS and the role of GLUT10 within the compartmentalization of ascorbate in physiological and diseased states. Centralization of clinical, treatment, and outcome data will enable better management for ATS patients. Establishment of representative animal disease models could facilitate the study of pathomechanisms underlying ATS. This might be relevant for other forms of vascular dysplasia, such as isolated aneurysm formation, hypertensive vasculopathy, and neovascularization. . 34, 875-889.</description><subject>Aneurysm</subject><subject>Aneurysms</subject><subject>Animal diseases</subject><subject>Animal health</subject><subject>Animal models</subject><subject>Arteries</subject><subject>Ascorbic acid</subject><subject>Blood vessels</subject><subject>Cardiovascular system</subject><subject>Collagen</subject><subject>Connective tissue diseases</subject><subject>Connective tissues</subject><subject>Cross-linking</subject><subject>Crosslinking</subject><subject>Developmental disabilities</subject><subject>Disorders</subject><subject>DNA methylation</subject><subject>Dysplasia</subject><subject>Elastin</subject><subject>Endoplasmic reticulum</subject><subject>Epigenetics</subject><subject>Fibers</subject><subject>Glucose transporter</subject><subject>Hereditary diseases</subject><subject>Histopathology</subject><subject>Homeostasis</subject><subject>Mitochondria</subject><subject>Molecular modelling</subject><subject>Morbidity</subject><subject>Patients</subject><subject>Physiology</subject><subject>Stenosis</subject><subject>Tortuosity</subject><subject>Vascular diseases</subject><subject>Vascularization</subject><issn>1523-0864</issn><issn>1557-7716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAURS0EoqUwsqJILCwp79lJ7LCgqnxVqsRAmS3HcaRUSVxsZyi_nkQtDCzvvuHo6uoQco0wRxD5vXJ-TgHzORcJOyFTTFMec47Z6fhTFoPIkgm58H4LABQRzsmEYUaR8WxKVgsXjKtVE22sC731ddhHH_uudLY1D9GiixZeW1eoYKKlbXfKhdZ0QTX1twq17aKn2ltXGvd4Sc4q1XhzdcwZ-Xx53izf4vX762q5WMeaZRDiXFGWKsGgRMGUwIIb0DiEMkCTtNJcVwUtMFWqrMZjtKElL4VAzRA4m5G7Q-_O2a_e-CDb2mvTNKoztveSMsiSPEt4OqC3_9Ct7V03rJM0BZozijwfqPhAaWe9d6aSO1e3yu0lghwdy8GxHB3L0fHA3xxb-6I15R_9K5X9AIAYd7Q</recordid><startdate>20210410</startdate><enddate>20210410</enddate><creator>Boel, Annekatrien</creator><creator>Veszelyi, Krisztina</creator><creator>Németh, Csilla E</creator><creator>Beyens, Aude</creator><creator>Willaert, Andy</creator><creator>Coucke, Paul</creator><creator>Callewaert, Bert</creator><creator>Margittai, Éva</creator><general>Mary Ann Liebert, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20210410</creationdate><title>Arterial Tortuosity Syndrome: An Ascorbate Compartmentalization Disorder?</title><author>Boel, Annekatrien ; Veszelyi, Krisztina ; Németh, Csilla E ; Beyens, Aude ; Willaert, Andy ; Coucke, Paul ; Callewaert, Bert ; Margittai, Éva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-9a235a830d183a81b7e0c11b7ae0245fc7cfb2b15aadf5aadece2d7d881c31073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aneurysm</topic><topic>Aneurysms</topic><topic>Animal diseases</topic><topic>Animal health</topic><topic>Animal models</topic><topic>Arteries</topic><topic>Ascorbic acid</topic><topic>Blood vessels</topic><topic>Cardiovascular system</topic><topic>Collagen</topic><topic>Connective tissue diseases</topic><topic>Connective tissues</topic><topic>Cross-linking</topic><topic>Crosslinking</topic><topic>Developmental disabilities</topic><topic>Disorders</topic><topic>DNA methylation</topic><topic>Dysplasia</topic><topic>Elastin</topic><topic>Endoplasmic reticulum</topic><topic>Epigenetics</topic><topic>Fibers</topic><topic>Glucose transporter</topic><topic>Hereditary diseases</topic><topic>Histopathology</topic><topic>Homeostasis</topic><topic>Mitochondria</topic><topic>Molecular modelling</topic><topic>Morbidity</topic><topic>Patients</topic><topic>Physiology</topic><topic>Stenosis</topic><topic>Tortuosity</topic><topic>Vascular diseases</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boel, Annekatrien</creatorcontrib><creatorcontrib>Veszelyi, Krisztina</creatorcontrib><creatorcontrib>Németh, Csilla E</creatorcontrib><creatorcontrib>Beyens, Aude</creatorcontrib><creatorcontrib>Willaert, Andy</creatorcontrib><creatorcontrib>Coucke, Paul</creatorcontrib><creatorcontrib>Callewaert, Bert</creatorcontrib><creatorcontrib>Margittai, Éva</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Antioxidants &amp; redox signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boel, Annekatrien</au><au>Veszelyi, Krisztina</au><au>Németh, Csilla E</au><au>Beyens, Aude</au><au>Willaert, Andy</au><au>Coucke, Paul</au><au>Callewaert, Bert</au><au>Margittai, Éva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arterial Tortuosity Syndrome: An Ascorbate Compartmentalization Disorder?</atitle><jtitle>Antioxidants &amp; redox signaling</jtitle><addtitle>Antioxid Redox Signal</addtitle><date>2021-04-10</date><risdate>2021</risdate><volume>34</volume><issue>11</issue><spage>875</spage><epage>889</epage><pages>875-889</pages><issn>1523-0864</issn><eissn>1557-7716</eissn><abstract>Cardiovascular disorders are the most important cause of morbidity and mortality in the Western world. Monogenic developmental disorders of the heart and vessels are highly valuable to study the physiological and pathological processes in cardiovascular system homeostasis. The arterial tortuosity syndrome (ATS) is a rare, autosomal recessive connective tissue disorder showing lengthening, tortuosity, and stenosis of the large arteries, with a propensity for aneurysm formation. In histopathology, it associates with fragmentation and disorganization of elastic fibers in several tissues, including the arterial wall. ATS is caused by pathogenic variants in encoding the facilitative glucose transporter (GLUT)10. Although several hypotheses have been forwarded, the molecular mechanisms linking disrupted GLUT10 activity with arterial malformations are largely unknown. The vascular and systemic manifestations and natural history of ATS patients have been largely delineated. GLUT10 was identified as an intracellular transporter of dehydroascorbic acid, which contributes to collagen and elastin cross-linking in the endoplasmic reticulum, redox homeostasis in the mitochondria, and global and gene-specific methylation/hydroxymethylation affecting epigenetic regulation in the nucleus. We revise here the current knowledge on ATS and the role of GLUT10 within the compartmentalization of ascorbate in physiological and diseased states. Centralization of clinical, treatment, and outcome data will enable better management for ATS patients. Establishment of representative animal disease models could facilitate the study of pathomechanisms underlying ATS. This might be relevant for other forms of vascular dysplasia, such as isolated aneurysm formation, hypertensive vasculopathy, and neovascularization. . 34, 875-889.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>31621376</pmid><doi>10.1089/ars.2019.7843</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1523-0864
ispartof Antioxidants & redox signaling, 2021-04, Vol.34 (11), p.875-889
issn 1523-0864
1557-7716
language eng
recordid cdi_proquest_miscellaneous_2306496475
source Alma/SFX Local Collection
subjects Aneurysm
Aneurysms
Animal diseases
Animal health
Animal models
Arteries
Ascorbic acid
Blood vessels
Cardiovascular system
Collagen
Connective tissue diseases
Connective tissues
Cross-linking
Crosslinking
Developmental disabilities
Disorders
DNA methylation
Dysplasia
Elastin
Endoplasmic reticulum
Epigenetics
Fibers
Glucose transporter
Hereditary diseases
Histopathology
Homeostasis
Mitochondria
Molecular modelling
Morbidity
Patients
Physiology
Stenosis
Tortuosity
Vascular diseases
Vascularization
title Arterial Tortuosity Syndrome: An Ascorbate Compartmentalization Disorder?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arterial%20Tortuosity%20Syndrome:%20An%20Ascorbate%20Compartmentalization%20Disorder?&rft.jtitle=Antioxidants%20&%20redox%20signaling&rft.au=Boel,%20Annekatrien&rft.date=2021-04-10&rft.volume=34&rft.issue=11&rft.spage=875&rft.epage=889&rft.pages=875-889&rft.issn=1523-0864&rft.eissn=1557-7716&rft_id=info:doi/10.1089/ars.2019.7843&rft_dat=%3Cproquest_cross%3E2306496475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502932179&rft_id=info:pmid/31621376&rfr_iscdi=true