Biomimetic Nanosilica–Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell‐Free, One‐Step Surgery
Current approaches to fabrication of nSC composites for bone tissue engineering (BTE) have limited capacity to achieve uniform surface functionalization while replicating the complex architecture and bioactivity of native bone, compromising application of these nanocomposites for in situ bone regene...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2019-12, Vol.31 (49), p.e1904341-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 49 |
container_start_page | e1904341 |
container_title | Advanced materials (Weinheim) |
container_volume | 31 |
creator | Wang, Shao‐Jie Jiang, Dong Zhang, Zheng‐Zheng Chen, You‐Rong Yang, Zheng‐Dong Zhang, Ji‐Ying Shi, Jinjun Wang, Xing Yu, Jia‐Kuo |
description | Current approaches to fabrication of nSC composites for bone tissue engineering (BTE) have limited capacity to achieve uniform surface functionalization while replicating the complex architecture and bioactivity of native bone, compromising application of these nanocomposites for in situ bone regeneration. A robust biosilicification strategy is reported to impart a uniform and stable osteoinductive surface to porous collagen scaffolds. The resultant nSC composites possess a native‐bone‐like porous structure and a nanosilica coating. The osteoinductivity of the nSC scaffolds is strongly dependent on the surface roughness and silicon content in the silica coating. Notably, without the use of exogenous cells and growth factors (GFs), the nSC scaffolds induce successful repair of a critical‐sized calvarium defect in a rabbit model. It is revealed that topographic and chemical cues presented by nSC scaffolds could synergistically activate multiple signaling pathways related to mesenchymal stem cell recruitment and bone regeneration. Thus, this facile surface biosilicification approach could be valuable by enabling production of BTE scaffolds with large sizes, complex porous structures, and varied osteoinductivity. The nanosilica‐functionalized scaffolds can be implanted via a cell/GF‐free, one‐step surgery for in situ bone regeneration, thus demonstrating high potential for clinical translation in treatment of massive bone defects.
A biosilicification strategy is developed to provide a uniform and robust osteoinductive surface on porous natural collagen scaffolds. The resultant nanosilica–collagen (nSC) scaffolds possess topographical and chemical cues for superior in situ bone defect repair, without the use of exogenous cells or growth factors. This novel preparation of biomimetic bone scaffolds shows promising clinical applications in the treatment of bone defects. |
doi_str_mv | 10.1002/adma.201904341 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2306494634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321209675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4101-c77ab397802145ea68621f78c0e9f7645422d5de29b2292f86889321572de8883</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMoOj62LiXgxoUdkzRJE3fj-AQf4Oi6ZNpbibTNmLTI7PwJgv_QX2JkfIAbV_dy-e7hcA5C25QMKSHswJSNGTJCNeEpp0toQAWjCSdaLKMB0alItORqDa2H8EgI0ZLIVbSWUsmoFmqA_JF1jW2gswW-Nq0LtraFeX95G7u6Ng_Q4klhqsrVZcCV8_giHmzX4yPXAr6FCIA3nXXtIb5zz8aX2OAx1PX7y-upB9jHNy3EfdLBDE96_wB-volWKlMH2PqaG-j-9ORufJ5c3pxdjEeXScEpoUmRZWaa6kwRRrkAI1X0XGWqIKCrTHLBGStFCUxPGdOsUlIpnTIqMlaCUirdQHsL3Zl3Tz2ELm9sKKI304LrQ85SIrnmMuUR3f2DPrret9FdpBhlMbdMRGq4oArvQvBQ5TNvG-PnOSX5Zxv5Zxv5TxvxYedLtp82UP7g3_FHQC-AZ1vD_B-5fHR8NfoV_wA7z5a-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321209675</pqid></control><display><type>article</type><title>Biomimetic Nanosilica–Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell‐Free, One‐Step Surgery</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Shao‐Jie ; Jiang, Dong ; Zhang, Zheng‐Zheng ; Chen, You‐Rong ; Yang, Zheng‐Dong ; Zhang, Ji‐Ying ; Shi, Jinjun ; Wang, Xing ; Yu, Jia‐Kuo</creator><creatorcontrib>Wang, Shao‐Jie ; Jiang, Dong ; Zhang, Zheng‐Zheng ; Chen, You‐Rong ; Yang, Zheng‐Dong ; Zhang, Ji‐Ying ; Shi, Jinjun ; Wang, Xing ; Yu, Jia‐Kuo</creatorcontrib><description>Current approaches to fabrication of nSC composites for bone tissue engineering (BTE) have limited capacity to achieve uniform surface functionalization while replicating the complex architecture and bioactivity of native bone, compromising application of these nanocomposites for in situ bone regeneration. A robust biosilicification strategy is reported to impart a uniform and stable osteoinductive surface to porous collagen scaffolds. The resultant nSC composites possess a native‐bone‐like porous structure and a nanosilica coating. The osteoinductivity of the nSC scaffolds is strongly dependent on the surface roughness and silicon content in the silica coating. Notably, without the use of exogenous cells and growth factors (GFs), the nSC scaffolds induce successful repair of a critical‐sized calvarium defect in a rabbit model. It is revealed that topographic and chemical cues presented by nSC scaffolds could synergistically activate multiple signaling pathways related to mesenchymal stem cell recruitment and bone regeneration. Thus, this facile surface biosilicification approach could be valuable by enabling production of BTE scaffolds with large sizes, complex porous structures, and varied osteoinductivity. The nanosilica‐functionalized scaffolds can be implanted via a cell/GF‐free, one‐step surgery for in situ bone regeneration, thus demonstrating high potential for clinical translation in treatment of massive bone defects.
A biosilicification strategy is developed to provide a uniform and robust osteoinductive surface on porous natural collagen scaffolds. The resultant nanosilica–collagen (nSC) scaffolds possess topographical and chemical cues for superior in situ bone defect repair, without the use of exogenous cells or growth factors. This novel preparation of biomimetic bone scaffolds shows promising clinical applications in the treatment of bone defects.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201904341</identifier><identifier>PMID: 31621958</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biomedical materials ; Biomimetic Materials - chemistry ; Biomimetics ; Bone Regeneration ; Cells, Cultured ; Coated Materials, Biocompatible - chemistry ; Collagen ; Collagen - chemistry ; Growth factors ; Materials science ; mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Nanocomposites ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Organic chemistry ; Osteogenesis ; Porosity ; Rabbits ; Regeneration (physiology) ; Replication ; Scaffolds ; Silicon dioxide ; Silicon Dioxide - chemistry ; Skull - injuries ; Skull - physiology ; Stem cells ; surface biosilicification ; Surface roughness ; Surgery ; Tissue engineering ; Tissue Scaffolds - chemistry</subject><ispartof>Advanced materials (Weinheim), 2019-12, Vol.31 (49), p.e1904341-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4101-c77ab397802145ea68621f78c0e9f7645422d5de29b2292f86889321572de8883</citedby><cites>FETCH-LOGICAL-c4101-c77ab397802145ea68621f78c0e9f7645422d5de29b2292f86889321572de8883</cites><orcidid>0000-0002-9978-425X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201904341$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201904341$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31621958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shao‐Jie</creatorcontrib><creatorcontrib>Jiang, Dong</creatorcontrib><creatorcontrib>Zhang, Zheng‐Zheng</creatorcontrib><creatorcontrib>Chen, You‐Rong</creatorcontrib><creatorcontrib>Yang, Zheng‐Dong</creatorcontrib><creatorcontrib>Zhang, Ji‐Ying</creatorcontrib><creatorcontrib>Shi, Jinjun</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Yu, Jia‐Kuo</creatorcontrib><title>Biomimetic Nanosilica–Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell‐Free, One‐Step Surgery</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Current approaches to fabrication of nSC composites for bone tissue engineering (BTE) have limited capacity to achieve uniform surface functionalization while replicating the complex architecture and bioactivity of native bone, compromising application of these nanocomposites for in situ bone regeneration. A robust biosilicification strategy is reported to impart a uniform and stable osteoinductive surface to porous collagen scaffolds. The resultant nSC composites possess a native‐bone‐like porous structure and a nanosilica coating. The osteoinductivity of the nSC scaffolds is strongly dependent on the surface roughness and silicon content in the silica coating. Notably, without the use of exogenous cells and growth factors (GFs), the nSC scaffolds induce successful repair of a critical‐sized calvarium defect in a rabbit model. It is revealed that topographic and chemical cues presented by nSC scaffolds could synergistically activate multiple signaling pathways related to mesenchymal stem cell recruitment and bone regeneration. Thus, this facile surface biosilicification approach could be valuable by enabling production of BTE scaffolds with large sizes, complex porous structures, and varied osteoinductivity. The nanosilica‐functionalized scaffolds can be implanted via a cell/GF‐free, one‐step surgery for in situ bone regeneration, thus demonstrating high potential for clinical translation in treatment of massive bone defects.
A biosilicification strategy is developed to provide a uniform and robust osteoinductive surface on porous natural collagen scaffolds. The resultant nanosilica–collagen (nSC) scaffolds possess topographical and chemical cues for superior in situ bone defect repair, without the use of exogenous cells or growth factors. This novel preparation of biomimetic bone scaffolds shows promising clinical applications in the treatment of bone defects.</description><subject>Animals</subject><subject>Biomedical materials</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetics</subject><subject>Bone Regeneration</subject><subject>Cells, Cultured</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Collagen</subject><subject>Collagen - chemistry</subject><subject>Growth factors</subject><subject>Materials science</subject><subject>mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Nanocomposites</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Organic chemistry</subject><subject>Osteogenesis</subject><subject>Porosity</subject><subject>Rabbits</subject><subject>Regeneration (physiology)</subject><subject>Replication</subject><subject>Scaffolds</subject><subject>Silicon dioxide</subject><subject>Silicon Dioxide - chemistry</subject><subject>Skull - injuries</subject><subject>Skull - physiology</subject><subject>Stem cells</subject><subject>surface biosilicification</subject><subject>Surface roughness</subject><subject>Surgery</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAUhYMoOj62LiXgxoUdkzRJE3fj-AQf4Oi6ZNpbibTNmLTI7PwJgv_QX2JkfIAbV_dy-e7hcA5C25QMKSHswJSNGTJCNeEpp0toQAWjCSdaLKMB0alItORqDa2H8EgI0ZLIVbSWUsmoFmqA_JF1jW2gswW-Nq0LtraFeX95G7u6Ng_Q4klhqsrVZcCV8_giHmzX4yPXAr6FCIA3nXXtIb5zz8aX2OAx1PX7y-upB9jHNy3EfdLBDE96_wB-volWKlMH2PqaG-j-9ORufJ5c3pxdjEeXScEpoUmRZWaa6kwRRrkAI1X0XGWqIKCrTHLBGStFCUxPGdOsUlIpnTIqMlaCUirdQHsL3Zl3Tz2ELm9sKKI304LrQ85SIrnmMuUR3f2DPrret9FdpBhlMbdMRGq4oArvQvBQ5TNvG-PnOSX5Zxv5Zxv5TxvxYedLtp82UP7g3_FHQC-AZ1vD_B-5fHR8NfoV_wA7z5a-</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Wang, Shao‐Jie</creator><creator>Jiang, Dong</creator><creator>Zhang, Zheng‐Zheng</creator><creator>Chen, You‐Rong</creator><creator>Yang, Zheng‐Dong</creator><creator>Zhang, Ji‐Ying</creator><creator>Shi, Jinjun</creator><creator>Wang, Xing</creator><creator>Yu, Jia‐Kuo</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9978-425X</orcidid></search><sort><creationdate>20191201</creationdate><title>Biomimetic Nanosilica–Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell‐Free, One‐Step Surgery</title><author>Wang, Shao‐Jie ; Jiang, Dong ; Zhang, Zheng‐Zheng ; Chen, You‐Rong ; Yang, Zheng‐Dong ; Zhang, Ji‐Ying ; Shi, Jinjun ; Wang, Xing ; Yu, Jia‐Kuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4101-c77ab397802145ea68621f78c0e9f7645422d5de29b2292f86889321572de8883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biomedical materials</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetics</topic><topic>Bone Regeneration</topic><topic>Cells, Cultured</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Collagen</topic><topic>Collagen - chemistry</topic><topic>Growth factors</topic><topic>Materials science</topic><topic>mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Nanocomposites</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Organic chemistry</topic><topic>Osteogenesis</topic><topic>Porosity</topic><topic>Rabbits</topic><topic>Regeneration (physiology)</topic><topic>Replication</topic><topic>Scaffolds</topic><topic>Silicon dioxide</topic><topic>Silicon Dioxide - chemistry</topic><topic>Skull - injuries</topic><topic>Skull - physiology</topic><topic>Stem cells</topic><topic>surface biosilicification</topic><topic>Surface roughness</topic><topic>Surgery</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shao‐Jie</creatorcontrib><creatorcontrib>Jiang, Dong</creatorcontrib><creatorcontrib>Zhang, Zheng‐Zheng</creatorcontrib><creatorcontrib>Chen, You‐Rong</creatorcontrib><creatorcontrib>Yang, Zheng‐Dong</creatorcontrib><creatorcontrib>Zhang, Ji‐Ying</creatorcontrib><creatorcontrib>Shi, Jinjun</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Yu, Jia‐Kuo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shao‐Jie</au><au>Jiang, Dong</au><au>Zhang, Zheng‐Zheng</au><au>Chen, You‐Rong</au><au>Yang, Zheng‐Dong</au><au>Zhang, Ji‐Ying</au><au>Shi, Jinjun</au><au>Wang, Xing</au><au>Yu, Jia‐Kuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic Nanosilica–Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell‐Free, One‐Step Surgery</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>31</volume><issue>49</issue><spage>e1904341</spage><epage>n/a</epage><pages>e1904341-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Current approaches to fabrication of nSC composites for bone tissue engineering (BTE) have limited capacity to achieve uniform surface functionalization while replicating the complex architecture and bioactivity of native bone, compromising application of these nanocomposites for in situ bone regeneration. A robust biosilicification strategy is reported to impart a uniform and stable osteoinductive surface to porous collagen scaffolds. The resultant nSC composites possess a native‐bone‐like porous structure and a nanosilica coating. The osteoinductivity of the nSC scaffolds is strongly dependent on the surface roughness and silicon content in the silica coating. Notably, without the use of exogenous cells and growth factors (GFs), the nSC scaffolds induce successful repair of a critical‐sized calvarium defect in a rabbit model. It is revealed that topographic and chemical cues presented by nSC scaffolds could synergistically activate multiple signaling pathways related to mesenchymal stem cell recruitment and bone regeneration. Thus, this facile surface biosilicification approach could be valuable by enabling production of BTE scaffolds with large sizes, complex porous structures, and varied osteoinductivity. The nanosilica‐functionalized scaffolds can be implanted via a cell/GF‐free, one‐step surgery for in situ bone regeneration, thus demonstrating high potential for clinical translation in treatment of massive bone defects.
A biosilicification strategy is developed to provide a uniform and robust osteoinductive surface on porous natural collagen scaffolds. The resultant nanosilica–collagen (nSC) scaffolds possess topographical and chemical cues for superior in situ bone defect repair, without the use of exogenous cells or growth factors. This novel preparation of biomimetic bone scaffolds shows promising clinical applications in the treatment of bone defects.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31621958</pmid><doi>10.1002/adma.201904341</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9978-425X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2019-12, Vol.31 (49), p.e1904341-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2306494634 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Biomedical materials Biomimetic Materials - chemistry Biomimetics Bone Regeneration Cells, Cultured Coated Materials, Biocompatible - chemistry Collagen Collagen - chemistry Growth factors Materials science mesenchymal stem cells Mesenchymal Stem Cells - cytology Nanocomposites Nanostructures - chemistry Nanostructures - ultrastructure Organic chemistry Osteogenesis Porosity Rabbits Regeneration (physiology) Replication Scaffolds Silicon dioxide Silicon Dioxide - chemistry Skull - injuries Skull - physiology Stem cells surface biosilicification Surface roughness Surgery Tissue engineering Tissue Scaffolds - chemistry |
title | Biomimetic Nanosilica–Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell‐Free, One‐Step Surgery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20Nanosilica%E2%80%93Collagen%20Scaffolds%20for%20In%20Situ%20Bone%20Regeneration:%20Toward%20a%20Cell%E2%80%90Free,%20One%E2%80%90Step%20Surgery&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Shao%E2%80%90Jie&rft.date=2019-12-01&rft.volume=31&rft.issue=49&rft.spage=e1904341&rft.epage=n/a&rft.pages=e1904341-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201904341&rft_dat=%3Cproquest_cross%3E2321209675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321209675&rft_id=info:pmid/31621958&rfr_iscdi=true |