Biomimetic Nanosilica–Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell‐Free, One‐Step Surgery

Current approaches to fabrication of nSC composites for bone tissue engineering (BTE) have limited capacity to achieve uniform surface functionalization while replicating the complex architecture and bioactivity of native bone, compromising application of these nanocomposites for in situ bone regene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2019-12, Vol.31 (49), p.e1904341-n/a
Hauptverfasser: Wang, Shao‐Jie, Jiang, Dong, Zhang, Zheng‐Zheng, Chen, You‐Rong, Yang, Zheng‐Dong, Zhang, Ji‐Ying, Shi, Jinjun, Wang, Xing, Yu, Jia‐Kuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 49
container_start_page e1904341
container_title Advanced materials (Weinheim)
container_volume 31
creator Wang, Shao‐Jie
Jiang, Dong
Zhang, Zheng‐Zheng
Chen, You‐Rong
Yang, Zheng‐Dong
Zhang, Ji‐Ying
Shi, Jinjun
Wang, Xing
Yu, Jia‐Kuo
description Current approaches to fabrication of nSC composites for bone tissue engineering (BTE) have limited capacity to achieve uniform surface functionalization while replicating the complex architecture and bioactivity of native bone, compromising application of these nanocomposites for in situ bone regeneration. A robust biosilicification strategy is reported to impart a uniform and stable osteoinductive surface to porous collagen scaffolds. The resultant nSC composites possess a native‐bone‐like porous structure and a nanosilica coating. The osteoinductivity of the nSC scaffolds is strongly dependent on the surface roughness and silicon content in the silica coating. Notably, without the use of exogenous cells and growth factors (GFs), the nSC scaffolds induce successful repair of a critical‐sized calvarium defect in a rabbit model. It is revealed that topographic and chemical cues presented by nSC scaffolds could synergistically activate multiple signaling pathways related to mesenchymal stem cell recruitment and bone regeneration. Thus, this facile surface biosilicification approach could be valuable by enabling production of BTE scaffolds with large sizes, complex porous structures, and varied osteoinductivity. The nanosilica‐functionalized scaffolds can be implanted via a cell/GF‐free, one‐step surgery for in situ bone regeneration, thus demonstrating high potential for clinical translation in treatment of massive bone defects. A biosilicification strategy is developed to provide a uniform and robust osteoinductive surface on porous natural collagen scaffolds. The resultant nanosilica–collagen (nSC) scaffolds possess topographical and chemical cues for superior in situ bone defect repair, without the use of exogenous cells or growth factors. This novel preparation of biomimetic bone scaffolds shows promising clinical applications in the treatment of bone defects.
doi_str_mv 10.1002/adma.201904341
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2306494634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321209675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4101-c77ab397802145ea68621f78c0e9f7645422d5de29b2292f86889321572de8883</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMoOj62LiXgxoUdkzRJE3fj-AQf4Oi6ZNpbibTNmLTI7PwJgv_QX2JkfIAbV_dy-e7hcA5C25QMKSHswJSNGTJCNeEpp0toQAWjCSdaLKMB0alItORqDa2H8EgI0ZLIVbSWUsmoFmqA_JF1jW2gswW-Nq0LtraFeX95G7u6Ng_Q4klhqsrVZcCV8_giHmzX4yPXAr6FCIA3nXXtIb5zz8aX2OAx1PX7y-upB9jHNy3EfdLBDE96_wB-volWKlMH2PqaG-j-9ORufJ5c3pxdjEeXScEpoUmRZWaa6kwRRrkAI1X0XGWqIKCrTHLBGStFCUxPGdOsUlIpnTIqMlaCUirdQHsL3Zl3Tz2ELm9sKKI304LrQ85SIrnmMuUR3f2DPrret9FdpBhlMbdMRGq4oArvQvBQ5TNvG-PnOSX5Zxv5Zxv5TxvxYedLtp82UP7g3_FHQC-AZ1vD_B-5fHR8NfoV_wA7z5a-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321209675</pqid></control><display><type>article</type><title>Biomimetic Nanosilica–Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell‐Free, One‐Step Surgery</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Shao‐Jie ; Jiang, Dong ; Zhang, Zheng‐Zheng ; Chen, You‐Rong ; Yang, Zheng‐Dong ; Zhang, Ji‐Ying ; Shi, Jinjun ; Wang, Xing ; Yu, Jia‐Kuo</creator><creatorcontrib>Wang, Shao‐Jie ; Jiang, Dong ; Zhang, Zheng‐Zheng ; Chen, You‐Rong ; Yang, Zheng‐Dong ; Zhang, Ji‐Ying ; Shi, Jinjun ; Wang, Xing ; Yu, Jia‐Kuo</creatorcontrib><description>Current approaches to fabrication of nSC composites for bone tissue engineering (BTE) have limited capacity to achieve uniform surface functionalization while replicating the complex architecture and bioactivity of native bone, compromising application of these nanocomposites for in situ bone regeneration. A robust biosilicification strategy is reported to impart a uniform and stable osteoinductive surface to porous collagen scaffolds. The resultant nSC composites possess a native‐bone‐like porous structure and a nanosilica coating. The osteoinductivity of the nSC scaffolds is strongly dependent on the surface roughness and silicon content in the silica coating. Notably, without the use of exogenous cells and growth factors (GFs), the nSC scaffolds induce successful repair of a critical‐sized calvarium defect in a rabbit model. It is revealed that topographic and chemical cues presented by nSC scaffolds could synergistically activate multiple signaling pathways related to mesenchymal stem cell recruitment and bone regeneration. Thus, this facile surface biosilicification approach could be valuable by enabling production of BTE scaffolds with large sizes, complex porous structures, and varied osteoinductivity. The nanosilica‐functionalized scaffolds can be implanted via a cell/GF‐free, one‐step surgery for in situ bone regeneration, thus demonstrating high potential for clinical translation in treatment of massive bone defects. A biosilicification strategy is developed to provide a uniform and robust osteoinductive surface on porous natural collagen scaffolds. The resultant nanosilica–collagen (nSC) scaffolds possess topographical and chemical cues for superior in situ bone defect repair, without the use of exogenous cells or growth factors. This novel preparation of biomimetic bone scaffolds shows promising clinical applications in the treatment of bone defects.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201904341</identifier><identifier>PMID: 31621958</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biomedical materials ; Biomimetic Materials - chemistry ; Biomimetics ; Bone Regeneration ; Cells, Cultured ; Coated Materials, Biocompatible - chemistry ; Collagen ; Collagen - chemistry ; Growth factors ; Materials science ; mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Nanocomposites ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Organic chemistry ; Osteogenesis ; Porosity ; Rabbits ; Regeneration (physiology) ; Replication ; Scaffolds ; Silicon dioxide ; Silicon Dioxide - chemistry ; Skull - injuries ; Skull - physiology ; Stem cells ; surface biosilicification ; Surface roughness ; Surgery ; Tissue engineering ; Tissue Scaffolds - chemistry</subject><ispartof>Advanced materials (Weinheim), 2019-12, Vol.31 (49), p.e1904341-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4101-c77ab397802145ea68621f78c0e9f7645422d5de29b2292f86889321572de8883</citedby><cites>FETCH-LOGICAL-c4101-c77ab397802145ea68621f78c0e9f7645422d5de29b2292f86889321572de8883</cites><orcidid>0000-0002-9978-425X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201904341$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201904341$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31621958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shao‐Jie</creatorcontrib><creatorcontrib>Jiang, Dong</creatorcontrib><creatorcontrib>Zhang, Zheng‐Zheng</creatorcontrib><creatorcontrib>Chen, You‐Rong</creatorcontrib><creatorcontrib>Yang, Zheng‐Dong</creatorcontrib><creatorcontrib>Zhang, Ji‐Ying</creatorcontrib><creatorcontrib>Shi, Jinjun</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Yu, Jia‐Kuo</creatorcontrib><title>Biomimetic Nanosilica–Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell‐Free, One‐Step Surgery</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Current approaches to fabrication of nSC composites for bone tissue engineering (BTE) have limited capacity to achieve uniform surface functionalization while replicating the complex architecture and bioactivity of native bone, compromising application of these nanocomposites for in situ bone regeneration. A robust biosilicification strategy is reported to impart a uniform and stable osteoinductive surface to porous collagen scaffolds. The resultant nSC composites possess a native‐bone‐like porous structure and a nanosilica coating. The osteoinductivity of the nSC scaffolds is strongly dependent on the surface roughness and silicon content in the silica coating. Notably, without the use of exogenous cells and growth factors (GFs), the nSC scaffolds induce successful repair of a critical‐sized calvarium defect in a rabbit model. It is revealed that topographic and chemical cues presented by nSC scaffolds could synergistically activate multiple signaling pathways related to mesenchymal stem cell recruitment and bone regeneration. Thus, this facile surface biosilicification approach could be valuable by enabling production of BTE scaffolds with large sizes, complex porous structures, and varied osteoinductivity. The nanosilica‐functionalized scaffolds can be implanted via a cell/GF‐free, one‐step surgery for in situ bone regeneration, thus demonstrating high potential for clinical translation in treatment of massive bone defects. A biosilicification strategy is developed to provide a uniform and robust osteoinductive surface on porous natural collagen scaffolds. The resultant nanosilica–collagen (nSC) scaffolds possess topographical and chemical cues for superior in situ bone defect repair, without the use of exogenous cells or growth factors. This novel preparation of biomimetic bone scaffolds shows promising clinical applications in the treatment of bone defects.</description><subject>Animals</subject><subject>Biomedical materials</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetics</subject><subject>Bone Regeneration</subject><subject>Cells, Cultured</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Collagen</subject><subject>Collagen - chemistry</subject><subject>Growth factors</subject><subject>Materials science</subject><subject>mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Nanocomposites</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Organic chemistry</subject><subject>Osteogenesis</subject><subject>Porosity</subject><subject>Rabbits</subject><subject>Regeneration (physiology)</subject><subject>Replication</subject><subject>Scaffolds</subject><subject>Silicon dioxide</subject><subject>Silicon Dioxide - chemistry</subject><subject>Skull - injuries</subject><subject>Skull - physiology</subject><subject>Stem cells</subject><subject>surface biosilicification</subject><subject>Surface roughness</subject><subject>Surgery</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAUhYMoOj62LiXgxoUdkzRJE3fj-AQf4Oi6ZNpbibTNmLTI7PwJgv_QX2JkfIAbV_dy-e7hcA5C25QMKSHswJSNGTJCNeEpp0toQAWjCSdaLKMB0alItORqDa2H8EgI0ZLIVbSWUsmoFmqA_JF1jW2gswW-Nq0LtraFeX95G7u6Ng_Q4klhqsrVZcCV8_giHmzX4yPXAr6FCIA3nXXtIb5zz8aX2OAx1PX7y-upB9jHNy3EfdLBDE96_wB-volWKlMH2PqaG-j-9ORufJ5c3pxdjEeXScEpoUmRZWaa6kwRRrkAI1X0XGWqIKCrTHLBGStFCUxPGdOsUlIpnTIqMlaCUirdQHsL3Zl3Tz2ELm9sKKI304LrQ85SIrnmMuUR3f2DPrret9FdpBhlMbdMRGq4oArvQvBQ5TNvG-PnOSX5Zxv5Zxv5TxvxYedLtp82UP7g3_FHQC-AZ1vD_B-5fHR8NfoV_wA7z5a-</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Wang, Shao‐Jie</creator><creator>Jiang, Dong</creator><creator>Zhang, Zheng‐Zheng</creator><creator>Chen, You‐Rong</creator><creator>Yang, Zheng‐Dong</creator><creator>Zhang, Ji‐Ying</creator><creator>Shi, Jinjun</creator><creator>Wang, Xing</creator><creator>Yu, Jia‐Kuo</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9978-425X</orcidid></search><sort><creationdate>20191201</creationdate><title>Biomimetic Nanosilica–Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell‐Free, One‐Step Surgery</title><author>Wang, Shao‐Jie ; Jiang, Dong ; Zhang, Zheng‐Zheng ; Chen, You‐Rong ; Yang, Zheng‐Dong ; Zhang, Ji‐Ying ; Shi, Jinjun ; Wang, Xing ; Yu, Jia‐Kuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4101-c77ab397802145ea68621f78c0e9f7645422d5de29b2292f86889321572de8883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biomedical materials</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetics</topic><topic>Bone Regeneration</topic><topic>Cells, Cultured</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Collagen</topic><topic>Collagen - chemistry</topic><topic>Growth factors</topic><topic>Materials science</topic><topic>mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Nanocomposites</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Organic chemistry</topic><topic>Osteogenesis</topic><topic>Porosity</topic><topic>Rabbits</topic><topic>Regeneration (physiology)</topic><topic>Replication</topic><topic>Scaffolds</topic><topic>Silicon dioxide</topic><topic>Silicon Dioxide - chemistry</topic><topic>Skull - injuries</topic><topic>Skull - physiology</topic><topic>Stem cells</topic><topic>surface biosilicification</topic><topic>Surface roughness</topic><topic>Surgery</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shao‐Jie</creatorcontrib><creatorcontrib>Jiang, Dong</creatorcontrib><creatorcontrib>Zhang, Zheng‐Zheng</creatorcontrib><creatorcontrib>Chen, You‐Rong</creatorcontrib><creatorcontrib>Yang, Zheng‐Dong</creatorcontrib><creatorcontrib>Zhang, Ji‐Ying</creatorcontrib><creatorcontrib>Shi, Jinjun</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Yu, Jia‐Kuo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shao‐Jie</au><au>Jiang, Dong</au><au>Zhang, Zheng‐Zheng</au><au>Chen, You‐Rong</au><au>Yang, Zheng‐Dong</au><au>Zhang, Ji‐Ying</au><au>Shi, Jinjun</au><au>Wang, Xing</au><au>Yu, Jia‐Kuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic Nanosilica–Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell‐Free, One‐Step Surgery</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>31</volume><issue>49</issue><spage>e1904341</spage><epage>n/a</epage><pages>e1904341-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Current approaches to fabrication of nSC composites for bone tissue engineering (BTE) have limited capacity to achieve uniform surface functionalization while replicating the complex architecture and bioactivity of native bone, compromising application of these nanocomposites for in situ bone regeneration. A robust biosilicification strategy is reported to impart a uniform and stable osteoinductive surface to porous collagen scaffolds. The resultant nSC composites possess a native‐bone‐like porous structure and a nanosilica coating. The osteoinductivity of the nSC scaffolds is strongly dependent on the surface roughness and silicon content in the silica coating. Notably, without the use of exogenous cells and growth factors (GFs), the nSC scaffolds induce successful repair of a critical‐sized calvarium defect in a rabbit model. It is revealed that topographic and chemical cues presented by nSC scaffolds could synergistically activate multiple signaling pathways related to mesenchymal stem cell recruitment and bone regeneration. Thus, this facile surface biosilicification approach could be valuable by enabling production of BTE scaffolds with large sizes, complex porous structures, and varied osteoinductivity. The nanosilica‐functionalized scaffolds can be implanted via a cell/GF‐free, one‐step surgery for in situ bone regeneration, thus demonstrating high potential for clinical translation in treatment of massive bone defects. A biosilicification strategy is developed to provide a uniform and robust osteoinductive surface on porous natural collagen scaffolds. The resultant nanosilica–collagen (nSC) scaffolds possess topographical and chemical cues for superior in situ bone defect repair, without the use of exogenous cells or growth factors. This novel preparation of biomimetic bone scaffolds shows promising clinical applications in the treatment of bone defects.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31621958</pmid><doi>10.1002/adma.201904341</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9978-425X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2019-12, Vol.31 (49), p.e1904341-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2306494634
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Biomedical materials
Biomimetic Materials - chemistry
Biomimetics
Bone Regeneration
Cells, Cultured
Coated Materials, Biocompatible - chemistry
Collagen
Collagen - chemistry
Growth factors
Materials science
mesenchymal stem cells
Mesenchymal Stem Cells - cytology
Nanocomposites
Nanostructures - chemistry
Nanostructures - ultrastructure
Organic chemistry
Osteogenesis
Porosity
Rabbits
Regeneration (physiology)
Replication
Scaffolds
Silicon dioxide
Silicon Dioxide - chemistry
Skull - injuries
Skull - physiology
Stem cells
surface biosilicification
Surface roughness
Surgery
Tissue engineering
Tissue Scaffolds - chemistry
title Biomimetic Nanosilica–Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell‐Free, One‐Step Surgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20Nanosilica%E2%80%93Collagen%20Scaffolds%20for%20In%20Situ%20Bone%20Regeneration:%20Toward%20a%20Cell%E2%80%90Free,%20One%E2%80%90Step%20Surgery&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Shao%E2%80%90Jie&rft.date=2019-12-01&rft.volume=31&rft.issue=49&rft.spage=e1904341&rft.epage=n/a&rft.pages=e1904341-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201904341&rft_dat=%3Cproquest_cross%3E2321209675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321209675&rft_id=info:pmid/31621958&rfr_iscdi=true