The ADP/ATP translocase drives mitophagy independent of nucleotide exchange
Mitochondrial homeostasis depends on mitophagy, the programmed degradation of mitochondria. Only a few proteins are known to participate in mitophagy. Here we develop a multidimensional CRISPR–Cas9 genetic screen, using multiple mitophagy reporter systems and pro-mitophagy triggers, and identify num...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2019-11, Vol.575 (7782), p.375-379 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 379 |
---|---|
container_issue | 7782 |
container_start_page | 375 |
container_title | Nature (London) |
container_volume | 575 |
creator | Hoshino, Atsushi Wang, Wei-jia Wada, Shogo McDermott-Roe, Chris Evans, Chantell S. Gosis, Bridget Morley, Michael P. Rathi, Komal S. Li, Jian Li, Kristina Yang, Steven McManus, Meagan J. Bowman, Caitlyn Potluri, Prasanth Levin, Michael Damrauer, Scott Wallace, Douglas C. Holzbaur, Erika L. F. Arany, Zoltan |
description | Mitochondrial homeostasis depends on mitophagy, the programmed degradation of mitochondria. Only a few proteins are known to participate in mitophagy. Here we develop a multidimensional CRISPR–Cas9 genetic screen, using multiple mitophagy reporter systems and pro-mitophagy triggers, and identify numerous components of parkin-dependent mitophagy
1
. Unexpectedly, we find that the adenine nucleotide translocator (ANT) complex is required for mitophagy in several cell types. Whereas pharmacological inhibition of ANT-mediated ADP/ATP exchange promotes mitophagy, genetic ablation of ANT paradoxically suppresses mitophagy. Notably, ANT promotes mitophagy independently of its nucleotide translocase catalytic activity. Instead, the ANT complex is required for inhibition of the presequence translocase TIM23, which leads to stabilization of PINK1, in response to bioenergetic collapse. ANT modulates TIM23 indirectly via interaction with TIM44, which regulates peptide import through TIM23
2
. Mice that lack ANT1 show blunted mitophagy and consequent profound accumulation of aberrant mitochondria. Disease-causing human mutations in ANT1 abrogate binding to TIM44 and TIM23 and inhibit mitophagy. Together, our findings show that ANT is an essential and fundamental mediator of mitophagy in health and disease.
A CRISPR–Cas9 genetic screen shows that the adenine nucleotide translocator is required for mitophagy and that this role is independent of its nucleotide translocase activity. |
doi_str_mv | 10.1038/s41586-019-1667-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2306492103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A638458727</galeid><sourcerecordid>A638458727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c720t-dab111b9dafd1de2d7342b9160d65424534dd8992486da9b206d7d59366ae7773</originalsourceid><addsrcrecordid>eNp10u9r1DAYB_Agijunf4BvpOgbRbolaZqkL8v5azh06IkvQ9o87WX0ki5pZfvvzXHTeXIj0ED6eZ6Up1-EnhN8QnAhTyMjpeQ5JlVOOBc5e4AWhAmeMy7FQ7TAmMocy4IfoScxXmKMSyLYY3RUEE6kKPkCfV6tIavfXZzWq4tsCtrFwbc6QmaC_QUx29jJj2vd32TWGRghPdyU-S5zczuAn6yBDK7btXY9PEWPOj1EeHa7H6MfH96vlp_y868fz5b1ed4Kiqfc6IYQ0lRGd4YYoEYUjDYV4djwklFWFswYWVWUSW501VDMjTBlVXCuQQhRHKPXu75j8FczxEltbGxhGLQDP0dFC8xZRdOIEn31H730c3Dp65IiohS45PhO9XoAZV3n0yTabVNV80KyUgq6vTY_oHpwEPTgHXQ2He_5lwd8O9or9S86OYDSMrCx7cGub_YKkpngeur1HKM6-_5t376939arn8sv-5rsdBt8jAE6NQa70eFGEay2eVO7vKmUN7XNm2Kp5sXtfOdmA-ZvxZ-AJUB3IKZXKSPh7gfc3_U31tjZcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317570560</pqid></control><display><type>article</type><title>The ADP/ATP translocase drives mitophagy independent of nucleotide exchange</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Hoshino, Atsushi ; Wang, Wei-jia ; Wada, Shogo ; McDermott-Roe, Chris ; Evans, Chantell S. ; Gosis, Bridget ; Morley, Michael P. ; Rathi, Komal S. ; Li, Jian ; Li, Kristina ; Yang, Steven ; McManus, Meagan J. ; Bowman, Caitlyn ; Potluri, Prasanth ; Levin, Michael ; Damrauer, Scott ; Wallace, Douglas C. ; Holzbaur, Erika L. F. ; Arany, Zoltan</creator><creatorcontrib>Hoshino, Atsushi ; Wang, Wei-jia ; Wada, Shogo ; McDermott-Roe, Chris ; Evans, Chantell S. ; Gosis, Bridget ; Morley, Michael P. ; Rathi, Komal S. ; Li, Jian ; Li, Kristina ; Yang, Steven ; McManus, Meagan J. ; Bowman, Caitlyn ; Potluri, Prasanth ; Levin, Michael ; Damrauer, Scott ; Wallace, Douglas C. ; Holzbaur, Erika L. F. ; Arany, Zoltan</creatorcontrib><description>Mitochondrial homeostasis depends on mitophagy, the programmed degradation of mitochondria. Only a few proteins are known to participate in mitophagy. Here we develop a multidimensional CRISPR–Cas9 genetic screen, using multiple mitophagy reporter systems and pro-mitophagy triggers, and identify numerous components of parkin-dependent mitophagy
1
. Unexpectedly, we find that the adenine nucleotide translocator (ANT) complex is required for mitophagy in several cell types. Whereas pharmacological inhibition of ANT-mediated ADP/ATP exchange promotes mitophagy, genetic ablation of ANT paradoxically suppresses mitophagy. Notably, ANT promotes mitophagy independently of its nucleotide translocase catalytic activity. Instead, the ANT complex is required for inhibition of the presequence translocase TIM23, which leads to stabilization of PINK1, in response to bioenergetic collapse. ANT modulates TIM23 indirectly via interaction with TIM44, which regulates peptide import through TIM23
2
. Mice that lack ANT1 show blunted mitophagy and consequent profound accumulation of aberrant mitochondria. Disease-causing human mutations in ANT1 abrogate binding to TIM44 and TIM23 and inhibit mitophagy. Together, our findings show that ANT is an essential and fundamental mediator of mitophagy in health and disease.
A CRISPR–Cas9 genetic screen shows that the adenine nucleotide translocator is required for mitophagy and that this role is independent of its nucleotide translocase activity.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1667-4</identifier><identifier>PMID: 31618756</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/1 ; 13/106 ; 13/109 ; 13/31 ; 13/44 ; 13/51 ; 13/89 ; 14 ; 14/19 ; 38 ; 38/39 ; 38/47 ; 38/77 ; 38/89 ; 631/337 ; 631/80/304 ; 631/80/39/2348 ; 631/80/642/333 ; 64/60 ; Ablation ; Adenine ; Adenosine diphosphate ; Adenosine triphosphate ; ADP/ATP translocase ; Analysis ; Animals ; Autophagy ; Autophagy (Cytology) ; Bioenergetics ; Bioinformatics ; Cardiomyopathy ; Catalytic activity ; Cell Line ; Collapse ; Control ; CRISPR ; Deoxyribonucleic acid ; DNA ; Exchanging ; Genes ; Genetic screening ; Genomes ; Homeostasis ; Humanities and Social Sciences ; Influence ; Kinases ; Mice ; Mitochondria ; Mitochondrial DNA ; Mitochondrial Membrane Transport Proteins - genetics ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial Precursor Protein Import Complex Proteins ; Mitophagy ; multidisciplinary ; Mutation ; Neuroblastoma ; Nucleotides ; Nucleotides - metabolism ; Parkin protein ; Phosphorylation ; Protein Binding ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Proteins ; PTEN-induced putative kinase ; Science ; Science (multidisciplinary) ; Translocase ; Translocation (Genetics)</subject><ispartof>Nature (London), 2019-11, Vol.575 (7782), p.375-379</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 14, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c720t-dab111b9dafd1de2d7342b9160d65424534dd8992486da9b206d7d59366ae7773</citedby><cites>FETCH-LOGICAL-c720t-dab111b9dafd1de2d7342b9160d65424534dd8992486da9b206d7d59366ae7773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-019-1667-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-019-1667-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31618756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoshino, Atsushi</creatorcontrib><creatorcontrib>Wang, Wei-jia</creatorcontrib><creatorcontrib>Wada, Shogo</creatorcontrib><creatorcontrib>McDermott-Roe, Chris</creatorcontrib><creatorcontrib>Evans, Chantell S.</creatorcontrib><creatorcontrib>Gosis, Bridget</creatorcontrib><creatorcontrib>Morley, Michael P.</creatorcontrib><creatorcontrib>Rathi, Komal S.</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Li, Kristina</creatorcontrib><creatorcontrib>Yang, Steven</creatorcontrib><creatorcontrib>McManus, Meagan J.</creatorcontrib><creatorcontrib>Bowman, Caitlyn</creatorcontrib><creatorcontrib>Potluri, Prasanth</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><creatorcontrib>Damrauer, Scott</creatorcontrib><creatorcontrib>Wallace, Douglas C.</creatorcontrib><creatorcontrib>Holzbaur, Erika L. F.</creatorcontrib><creatorcontrib>Arany, Zoltan</creatorcontrib><title>The ADP/ATP translocase drives mitophagy independent of nucleotide exchange</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Mitochondrial homeostasis depends on mitophagy, the programmed degradation of mitochondria. Only a few proteins are known to participate in mitophagy. Here we develop a multidimensional CRISPR–Cas9 genetic screen, using multiple mitophagy reporter systems and pro-mitophagy triggers, and identify numerous components of parkin-dependent mitophagy
1
. Unexpectedly, we find that the adenine nucleotide translocator (ANT) complex is required for mitophagy in several cell types. Whereas pharmacological inhibition of ANT-mediated ADP/ATP exchange promotes mitophagy, genetic ablation of ANT paradoxically suppresses mitophagy. Notably, ANT promotes mitophagy independently of its nucleotide translocase catalytic activity. Instead, the ANT complex is required for inhibition of the presequence translocase TIM23, which leads to stabilization of PINK1, in response to bioenergetic collapse. ANT modulates TIM23 indirectly via interaction with TIM44, which regulates peptide import through TIM23
2
. Mice that lack ANT1 show blunted mitophagy and consequent profound accumulation of aberrant mitochondria. Disease-causing human mutations in ANT1 abrogate binding to TIM44 and TIM23 and inhibit mitophagy. Together, our findings show that ANT is an essential and fundamental mediator of mitophagy in health and disease.
A CRISPR–Cas9 genetic screen shows that the adenine nucleotide translocator is required for mitophagy and that this role is independent of its nucleotide translocase activity.</description><subject>13</subject><subject>13/1</subject><subject>13/106</subject><subject>13/109</subject><subject>13/31</subject><subject>13/44</subject><subject>13/51</subject><subject>13/89</subject><subject>14</subject><subject>14/19</subject><subject>38</subject><subject>38/39</subject><subject>38/47</subject><subject>38/77</subject><subject>38/89</subject><subject>631/337</subject><subject>631/80/304</subject><subject>631/80/39/2348</subject><subject>631/80/642/333</subject><subject>64/60</subject><subject>Ablation</subject><subject>Adenine</subject><subject>Adenosine diphosphate</subject><subject>Adenosine triphosphate</subject><subject>ADP/ATP translocase</subject><subject>Analysis</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy (Cytology)</subject><subject>Bioenergetics</subject><subject>Bioinformatics</subject><subject>Cardiomyopathy</subject><subject>Catalytic activity</subject><subject>Cell Line</subject><subject>Collapse</subject><subject>Control</subject><subject>CRISPR</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Exchanging</subject><subject>Genes</subject><subject>Genetic screening</subject><subject>Genomes</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Influence</subject><subject>Kinases</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial Membrane Transport Proteins - genetics</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial Precursor Protein Import Complex Proteins</subject><subject>Mitophagy</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neuroblastoma</subject><subject>Nucleotides</subject><subject>Nucleotides - metabolism</subject><subject>Parkin protein</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Proteins</subject><subject>PTEN-induced putative kinase</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Translocase</subject><subject>Translocation (Genetics)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10u9r1DAYB_Agijunf4BvpOgbRbolaZqkL8v5azh06IkvQ9o87WX0ki5pZfvvzXHTeXIj0ED6eZ6Up1-EnhN8QnAhTyMjpeQ5JlVOOBc5e4AWhAmeMy7FQ7TAmMocy4IfoScxXmKMSyLYY3RUEE6kKPkCfV6tIavfXZzWq4tsCtrFwbc6QmaC_QUx29jJj2vd32TWGRghPdyU-S5zczuAn6yBDK7btXY9PEWPOj1EeHa7H6MfH96vlp_y868fz5b1ed4Kiqfc6IYQ0lRGd4YYoEYUjDYV4djwklFWFswYWVWUSW501VDMjTBlVXCuQQhRHKPXu75j8FczxEltbGxhGLQDP0dFC8xZRdOIEn31H730c3Dp65IiohS45PhO9XoAZV3n0yTabVNV80KyUgq6vTY_oHpwEPTgHXQ2He_5lwd8O9or9S86OYDSMrCx7cGub_YKkpngeur1HKM6-_5t376939arn8sv-5rsdBt8jAE6NQa70eFGEay2eVO7vKmUN7XNm2Kp5sXtfOdmA-ZvxZ-AJUB3IKZXKSPh7gfc3_U31tjZcw</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Hoshino, Atsushi</creator><creator>Wang, Wei-jia</creator><creator>Wada, Shogo</creator><creator>McDermott-Roe, Chris</creator><creator>Evans, Chantell S.</creator><creator>Gosis, Bridget</creator><creator>Morley, Michael P.</creator><creator>Rathi, Komal S.</creator><creator>Li, Jian</creator><creator>Li, Kristina</creator><creator>Yang, Steven</creator><creator>McManus, Meagan J.</creator><creator>Bowman, Caitlyn</creator><creator>Potluri, Prasanth</creator><creator>Levin, Michael</creator><creator>Damrauer, Scott</creator><creator>Wallace, Douglas C.</creator><creator>Holzbaur, Erika L. F.</creator><creator>Arany, Zoltan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201911</creationdate><title>The ADP/ATP translocase drives mitophagy independent of nucleotide exchange</title><author>Hoshino, Atsushi ; Wang, Wei-jia ; Wada, Shogo ; McDermott-Roe, Chris ; Evans, Chantell S. ; Gosis, Bridget ; Morley, Michael P. ; Rathi, Komal S. ; Li, Jian ; Li, Kristina ; Yang, Steven ; McManus, Meagan J. ; Bowman, Caitlyn ; Potluri, Prasanth ; Levin, Michael ; Damrauer, Scott ; Wallace, Douglas C. ; Holzbaur, Erika L. F. ; Arany, Zoltan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c720t-dab111b9dafd1de2d7342b9160d65424534dd8992486da9b206d7d59366ae7773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13</topic><topic>13/1</topic><topic>13/106</topic><topic>13/109</topic><topic>13/31</topic><topic>13/44</topic><topic>13/51</topic><topic>13/89</topic><topic>14</topic><topic>14/19</topic><topic>38</topic><topic>38/39</topic><topic>38/47</topic><topic>38/77</topic><topic>38/89</topic><topic>631/337</topic><topic>631/80/304</topic><topic>631/80/39/2348</topic><topic>631/80/642/333</topic><topic>64/60</topic><topic>Ablation</topic><topic>Adenine</topic><topic>Adenosine diphosphate</topic><topic>Adenosine triphosphate</topic><topic>ADP/ATP translocase</topic><topic>Analysis</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy (Cytology)</topic><topic>Bioenergetics</topic><topic>Bioinformatics</topic><topic>Cardiomyopathy</topic><topic>Catalytic activity</topic><topic>Cell Line</topic><topic>Collapse</topic><topic>Control</topic><topic>CRISPR</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Exchanging</topic><topic>Genes</topic><topic>Genetic screening</topic><topic>Genomes</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Influence</topic><topic>Kinases</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial Membrane Transport Proteins - genetics</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial Precursor Protein Import Complex Proteins</topic><topic>Mitophagy</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neuroblastoma</topic><topic>Nucleotides</topic><topic>Nucleotides - metabolism</topic><topic>Parkin protein</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Proteins</topic><topic>PTEN-induced putative kinase</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Translocase</topic><topic>Translocation (Genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoshino, Atsushi</creatorcontrib><creatorcontrib>Wang, Wei-jia</creatorcontrib><creatorcontrib>Wada, Shogo</creatorcontrib><creatorcontrib>McDermott-Roe, Chris</creatorcontrib><creatorcontrib>Evans, Chantell S.</creatorcontrib><creatorcontrib>Gosis, Bridget</creatorcontrib><creatorcontrib>Morley, Michael P.</creatorcontrib><creatorcontrib>Rathi, Komal S.</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Li, Kristina</creatorcontrib><creatorcontrib>Yang, Steven</creatorcontrib><creatorcontrib>McManus, Meagan J.</creatorcontrib><creatorcontrib>Bowman, Caitlyn</creatorcontrib><creatorcontrib>Potluri, Prasanth</creatorcontrib><creatorcontrib>Levin, Michael</creatorcontrib><creatorcontrib>Damrauer, Scott</creatorcontrib><creatorcontrib>Wallace, Douglas C.</creatorcontrib><creatorcontrib>Holzbaur, Erika L. F.</creatorcontrib><creatorcontrib>Arany, Zoltan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoshino, Atsushi</au><au>Wang, Wei-jia</au><au>Wada, Shogo</au><au>McDermott-Roe, Chris</au><au>Evans, Chantell S.</au><au>Gosis, Bridget</au><au>Morley, Michael P.</au><au>Rathi, Komal S.</au><au>Li, Jian</au><au>Li, Kristina</au><au>Yang, Steven</au><au>McManus, Meagan J.</au><au>Bowman, Caitlyn</au><au>Potluri, Prasanth</au><au>Levin, Michael</au><au>Damrauer, Scott</au><au>Wallace, Douglas C.</au><au>Holzbaur, Erika L. F.</au><au>Arany, Zoltan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ADP/ATP translocase drives mitophagy independent of nucleotide exchange</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-11</date><risdate>2019</risdate><volume>575</volume><issue>7782</issue><spage>375</spage><epage>379</epage><pages>375-379</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Mitochondrial homeostasis depends on mitophagy, the programmed degradation of mitochondria. Only a few proteins are known to participate in mitophagy. Here we develop a multidimensional CRISPR–Cas9 genetic screen, using multiple mitophagy reporter systems and pro-mitophagy triggers, and identify numerous components of parkin-dependent mitophagy
1
. Unexpectedly, we find that the adenine nucleotide translocator (ANT) complex is required for mitophagy in several cell types. Whereas pharmacological inhibition of ANT-mediated ADP/ATP exchange promotes mitophagy, genetic ablation of ANT paradoxically suppresses mitophagy. Notably, ANT promotes mitophagy independently of its nucleotide translocase catalytic activity. Instead, the ANT complex is required for inhibition of the presequence translocase TIM23, which leads to stabilization of PINK1, in response to bioenergetic collapse. ANT modulates TIM23 indirectly via interaction with TIM44, which regulates peptide import through TIM23
2
. Mice that lack ANT1 show blunted mitophagy and consequent profound accumulation of aberrant mitochondria. Disease-causing human mutations in ANT1 abrogate binding to TIM44 and TIM23 and inhibit mitophagy. Together, our findings show that ANT is an essential and fundamental mediator of mitophagy in health and disease.
A CRISPR–Cas9 genetic screen shows that the adenine nucleotide translocator is required for mitophagy and that this role is independent of its nucleotide translocase activity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31618756</pmid><doi>10.1038/s41586-019-1667-4</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2019-11, Vol.575 (7782), p.375-379 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2306492103 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature |
subjects | 13 13/1 13/106 13/109 13/31 13/44 13/51 13/89 14 14/19 38 38/39 38/47 38/77 38/89 631/337 631/80/304 631/80/39/2348 631/80/642/333 64/60 Ablation Adenine Adenosine diphosphate Adenosine triphosphate ADP/ATP translocase Analysis Animals Autophagy Autophagy (Cytology) Bioenergetics Bioinformatics Cardiomyopathy Catalytic activity Cell Line Collapse Control CRISPR Deoxyribonucleic acid DNA Exchanging Genes Genetic screening Genomes Homeostasis Humanities and Social Sciences Influence Kinases Mice Mitochondria Mitochondrial DNA Mitochondrial Membrane Transport Proteins - genetics Mitochondrial Membrane Transport Proteins - metabolism Mitochondrial Precursor Protein Import Complex Proteins Mitophagy multidisciplinary Mutation Neuroblastoma Nucleotides Nucleotides - metabolism Parkin protein Phosphorylation Protein Binding Protein Kinases - genetics Protein Kinases - metabolism Proteins PTEN-induced putative kinase Science Science (multidisciplinary) Translocase Translocation (Genetics) |
title | The ADP/ATP translocase drives mitophagy independent of nucleotide exchange |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ADP/ATP%20translocase%20drives%20mitophagy%20independent%20of%20nucleotide%20exchange&rft.jtitle=Nature%20(London)&rft.au=Hoshino,%20Atsushi&rft.date=2019-11&rft.volume=575&rft.issue=7782&rft.spage=375&rft.epage=379&rft.pages=375-379&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1667-4&rft_dat=%3Cgale_proqu%3EA638458727%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317570560&rft_id=info:pmid/31618756&rft_galeid=A638458727&rfr_iscdi=true |