Rapid, High‐Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts
Carbon‐black‐supported nanoparticles (CNPs) have attracted considerable attention for their intriguing catalytic properties and promising applications. The traditional liquid synthesis of CNPs commonly involves demanding operation conditions and complex pre‐ or post‐treatments, which are time consum...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2019-11, Vol.15 (47), p.e1904881-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 47 |
container_start_page | e1904881 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 15 |
creator | Zhong, Geng Xu, Shaomao Cui, Mingjin Dong, Qi Wang, Xizheng Xia, Qinqin Gao, Jinlong Pei, Yong Qiao, Yun Pastel, Glenn Sunaoshi, Takeshi Yang, Bao Hu, Liangbing |
description | Carbon‐black‐supported nanoparticles (CNPs) have attracted considerable attention for their intriguing catalytic properties and promising applications. The traditional liquid synthesis of CNPs commonly involves demanding operation conditions and complex pre‐ or post‐treatments, which are time consuming and energy inefficient. Herein, a rapid, scalable, and universal strategy is reported to synthesize highly dispersed metal nanoparticles embedded in a carbon matrix via microwave irradiation of carbon black with preloaded precursors. By optimizing the amount of carbon black, the microwave absorption is dramatically improved while the thermal dissipation is effectively controlled, leading to a rapid temperature increase in carbon black, ramping to 1270 K in just 6 s. The whole synthesis process requires no capping agents or surfactants, nor tedious pre‐ or post‐treatments of carbon black, showing tremendous potential for mass production. As a proof of concept, the synthesis of ultrafine Ru nanoparticles (≈2.57 nm) uniformly embedded in carbon black using this microwave heating technique is demonstrated, which displays remarkable electrocatalytic performance when used as the cathode in a Li–O2 battery. This microwave heating method can be extended to the synthesis of other nanoparticles, thereby providing a general methodology for the mass production of carbon‐supported catalytic nanoparticles.
A rapid, in situ high‐temperature microwave heating strategy is reported for the synthesis of carbon‐supported nanocatalysts. The temperature of this method reaches up to 1270 K in 6 s. The optimized loading amount of the carbon black is crucial to achieve the rapid high‐temperature heating. |
doi_str_mv | 10.1002/smll.201904881 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2305475397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305475397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4101-140150edc318b882bf9ab78c8a74ffcc63f87089c45cc299c500bc7ce07d392d3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUQC0EoqWwMqJILAxNubaT2B6hAlopgETLHDmOQ1PyIk6osvEJfCNfQqqWIrEw-Q7nHl0fhE4xjDAAuTRZmo4IYAEO53gP9bGHqe1xIvZ3M4YeOjJmCUAxcdgh6lHsAXeF10f-kyyTaGhNkpfF18fnXGelrmTdVHpoTXNrltSNdZ-oqljJd23N2rxeaJMYq4it6yZ9tR5kXihZy7Q1tTlGB7FMjT7ZvgP0fHszH09s__FuOr7ybeVgwDZ2ALugI0UxDzknYSxkyLjikjlxrJRHY86AC-W4ShEhlAsQKqY0sIgKEtEButh4y6p4a7SpgywxSqepzHXRmIBQcB3mUsE69PwPuiyaKu-u6yjs8q4CXVOjDdV91JhKx0FZJZms2gBDsO4crDsHu87dwtlW24SZjnb4T9gOEBtglaS6_UcXzO59_1f-DfxkicM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315885937</pqid></control><display><type>article</type><title>Rapid, High‐Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts</title><source>Wiley Online Library All Journals</source><creator>Zhong, Geng ; Xu, Shaomao ; Cui, Mingjin ; Dong, Qi ; Wang, Xizheng ; Xia, Qinqin ; Gao, Jinlong ; Pei, Yong ; Qiao, Yun ; Pastel, Glenn ; Sunaoshi, Takeshi ; Yang, Bao ; Hu, Liangbing</creator><creatorcontrib>Zhong, Geng ; Xu, Shaomao ; Cui, Mingjin ; Dong, Qi ; Wang, Xizheng ; Xia, Qinqin ; Gao, Jinlong ; Pei, Yong ; Qiao, Yun ; Pastel, Glenn ; Sunaoshi, Takeshi ; Yang, Bao ; Hu, Liangbing</creatorcontrib><description>Carbon‐black‐supported nanoparticles (CNPs) have attracted considerable attention for their intriguing catalytic properties and promising applications. The traditional liquid synthesis of CNPs commonly involves demanding operation conditions and complex pre‐ or post‐treatments, which are time consuming and energy inefficient. Herein, a rapid, scalable, and universal strategy is reported to synthesize highly dispersed metal nanoparticles embedded in a carbon matrix via microwave irradiation of carbon black with preloaded precursors. By optimizing the amount of carbon black, the microwave absorption is dramatically improved while the thermal dissipation is effectively controlled, leading to a rapid temperature increase in carbon black, ramping to 1270 K in just 6 s. The whole synthesis process requires no capping agents or surfactants, nor tedious pre‐ or post‐treatments of carbon black, showing tremendous potential for mass production. As a proof of concept, the synthesis of ultrafine Ru nanoparticles (≈2.57 nm) uniformly embedded in carbon black using this microwave heating technique is demonstrated, which displays remarkable electrocatalytic performance when used as the cathode in a Li–O2 battery. This microwave heating method can be extended to the synthesis of other nanoparticles, thereby providing a general methodology for the mass production of carbon‐supported catalytic nanoparticles.
A rapid, in situ high‐temperature microwave heating strategy is reported for the synthesis of carbon‐supported nanocatalysts. The temperature of this method reaches up to 1270 K in 6 s. The optimized loading amount of the carbon black is crucial to achieve the rapid high‐temperature heating.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201904881</identifier><identifier>PMID: 31608596</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Carbon black ; Heating ; high temperature ; in situ heating ; Li–O2 batteries ; Mass production ; Microwave absorption ; Microwave heating ; microwave synthesis ; nanocatalysts ; Nanoparticles ; Nanotechnology ; Ultrafines</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2019-11, Vol.15 (47), p.e1904881-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4101-140150edc318b882bf9ab78c8a74ffcc63f87089c45cc299c500bc7ce07d392d3</citedby><cites>FETCH-LOGICAL-c4101-140150edc318b882bf9ab78c8a74ffcc63f87089c45cc299c500bc7ce07d392d3</cites><orcidid>0000-0002-9456-9315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201904881$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201904881$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31608596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Geng</creatorcontrib><creatorcontrib>Xu, Shaomao</creatorcontrib><creatorcontrib>Cui, Mingjin</creatorcontrib><creatorcontrib>Dong, Qi</creatorcontrib><creatorcontrib>Wang, Xizheng</creatorcontrib><creatorcontrib>Xia, Qinqin</creatorcontrib><creatorcontrib>Gao, Jinlong</creatorcontrib><creatorcontrib>Pei, Yong</creatorcontrib><creatorcontrib>Qiao, Yun</creatorcontrib><creatorcontrib>Pastel, Glenn</creatorcontrib><creatorcontrib>Sunaoshi, Takeshi</creatorcontrib><creatorcontrib>Yang, Bao</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><title>Rapid, High‐Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Carbon‐black‐supported nanoparticles (CNPs) have attracted considerable attention for their intriguing catalytic properties and promising applications. The traditional liquid synthesis of CNPs commonly involves demanding operation conditions and complex pre‐ or post‐treatments, which are time consuming and energy inefficient. Herein, a rapid, scalable, and universal strategy is reported to synthesize highly dispersed metal nanoparticles embedded in a carbon matrix via microwave irradiation of carbon black with preloaded precursors. By optimizing the amount of carbon black, the microwave absorption is dramatically improved while the thermal dissipation is effectively controlled, leading to a rapid temperature increase in carbon black, ramping to 1270 K in just 6 s. The whole synthesis process requires no capping agents or surfactants, nor tedious pre‐ or post‐treatments of carbon black, showing tremendous potential for mass production. As a proof of concept, the synthesis of ultrafine Ru nanoparticles (≈2.57 nm) uniformly embedded in carbon black using this microwave heating technique is demonstrated, which displays remarkable electrocatalytic performance when used as the cathode in a Li–O2 battery. This microwave heating method can be extended to the synthesis of other nanoparticles, thereby providing a general methodology for the mass production of carbon‐supported catalytic nanoparticles.
A rapid, in situ high‐temperature microwave heating strategy is reported for the synthesis of carbon‐supported nanocatalysts. The temperature of this method reaches up to 1270 K in 6 s. The optimized loading amount of the carbon black is crucial to achieve the rapid high‐temperature heating.</description><subject>Carbon</subject><subject>Carbon black</subject><subject>Heating</subject><subject>high temperature</subject><subject>in situ heating</subject><subject>Li–O2 batteries</subject><subject>Mass production</subject><subject>Microwave absorption</subject><subject>Microwave heating</subject><subject>microwave synthesis</subject><subject>nanocatalysts</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Ultrafines</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUQC0EoqWwMqJILAxNubaT2B6hAlopgETLHDmOQ1PyIk6osvEJfCNfQqqWIrEw-Q7nHl0fhE4xjDAAuTRZmo4IYAEO53gP9bGHqe1xIvZ3M4YeOjJmCUAxcdgh6lHsAXeF10f-kyyTaGhNkpfF18fnXGelrmTdVHpoTXNrltSNdZ-oqljJd23N2rxeaJMYq4it6yZ9tR5kXihZy7Q1tTlGB7FMjT7ZvgP0fHszH09s__FuOr7ybeVgwDZ2ALugI0UxDzknYSxkyLjikjlxrJRHY86AC-W4ShEhlAsQKqY0sIgKEtEButh4y6p4a7SpgywxSqepzHXRmIBQcB3mUsE69PwPuiyaKu-u6yjs8q4CXVOjDdV91JhKx0FZJZms2gBDsO4crDsHu87dwtlW24SZjnb4T9gOEBtglaS6_UcXzO59_1f-DfxkicM</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zhong, Geng</creator><creator>Xu, Shaomao</creator><creator>Cui, Mingjin</creator><creator>Dong, Qi</creator><creator>Wang, Xizheng</creator><creator>Xia, Qinqin</creator><creator>Gao, Jinlong</creator><creator>Pei, Yong</creator><creator>Qiao, Yun</creator><creator>Pastel, Glenn</creator><creator>Sunaoshi, Takeshi</creator><creator>Yang, Bao</creator><creator>Hu, Liangbing</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9456-9315</orcidid></search><sort><creationdate>20191101</creationdate><title>Rapid, High‐Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts</title><author>Zhong, Geng ; Xu, Shaomao ; Cui, Mingjin ; Dong, Qi ; Wang, Xizheng ; Xia, Qinqin ; Gao, Jinlong ; Pei, Yong ; Qiao, Yun ; Pastel, Glenn ; Sunaoshi, Takeshi ; Yang, Bao ; Hu, Liangbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4101-140150edc318b882bf9ab78c8a74ffcc63f87089c45cc299c500bc7ce07d392d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Carbon black</topic><topic>Heating</topic><topic>high temperature</topic><topic>in situ heating</topic><topic>Li–O2 batteries</topic><topic>Mass production</topic><topic>Microwave absorption</topic><topic>Microwave heating</topic><topic>microwave synthesis</topic><topic>nanocatalysts</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Geng</creatorcontrib><creatorcontrib>Xu, Shaomao</creatorcontrib><creatorcontrib>Cui, Mingjin</creatorcontrib><creatorcontrib>Dong, Qi</creatorcontrib><creatorcontrib>Wang, Xizheng</creatorcontrib><creatorcontrib>Xia, Qinqin</creatorcontrib><creatorcontrib>Gao, Jinlong</creatorcontrib><creatorcontrib>Pei, Yong</creatorcontrib><creatorcontrib>Qiao, Yun</creatorcontrib><creatorcontrib>Pastel, Glenn</creatorcontrib><creatorcontrib>Sunaoshi, Takeshi</creatorcontrib><creatorcontrib>Yang, Bao</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Geng</au><au>Xu, Shaomao</au><au>Cui, Mingjin</au><au>Dong, Qi</au><au>Wang, Xizheng</au><au>Xia, Qinqin</au><au>Gao, Jinlong</au><au>Pei, Yong</au><au>Qiao, Yun</au><au>Pastel, Glenn</au><au>Sunaoshi, Takeshi</au><au>Yang, Bao</au><au>Hu, Liangbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid, High‐Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>15</volume><issue>47</issue><spage>e1904881</spage><epage>n/a</epage><pages>e1904881-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Carbon‐black‐supported nanoparticles (CNPs) have attracted considerable attention for their intriguing catalytic properties and promising applications. The traditional liquid synthesis of CNPs commonly involves demanding operation conditions and complex pre‐ or post‐treatments, which are time consuming and energy inefficient. Herein, a rapid, scalable, and universal strategy is reported to synthesize highly dispersed metal nanoparticles embedded in a carbon matrix via microwave irradiation of carbon black with preloaded precursors. By optimizing the amount of carbon black, the microwave absorption is dramatically improved while the thermal dissipation is effectively controlled, leading to a rapid temperature increase in carbon black, ramping to 1270 K in just 6 s. The whole synthesis process requires no capping agents or surfactants, nor tedious pre‐ or post‐treatments of carbon black, showing tremendous potential for mass production. As a proof of concept, the synthesis of ultrafine Ru nanoparticles (≈2.57 nm) uniformly embedded in carbon black using this microwave heating technique is demonstrated, which displays remarkable electrocatalytic performance when used as the cathode in a Li–O2 battery. This microwave heating method can be extended to the synthesis of other nanoparticles, thereby providing a general methodology for the mass production of carbon‐supported catalytic nanoparticles.
A rapid, in situ high‐temperature microwave heating strategy is reported for the synthesis of carbon‐supported nanocatalysts. The temperature of this method reaches up to 1270 K in 6 s. The optimized loading amount of the carbon black is crucial to achieve the rapid high‐temperature heating.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31608596</pmid><doi>10.1002/smll.201904881</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9456-9315</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2019-11, Vol.15 (47), p.e1904881-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2305475397 |
source | Wiley Online Library All Journals |
subjects | Carbon Carbon black Heating high temperature in situ heating Li–O2 batteries Mass production Microwave absorption Microwave heating microwave synthesis nanocatalysts Nanoparticles Nanotechnology Ultrafines |
title | Rapid, High‐Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid,%20High%E2%80%90Temperature,%20In%20Situ%20Microwave%20Synthesis%20of%20Bulk%20Nanocatalysts&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhong,%20Geng&rft.date=2019-11-01&rft.volume=15&rft.issue=47&rft.spage=e1904881&rft.epage=n/a&rft.pages=e1904881-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201904881&rft_dat=%3Cproquest_cross%3E2305475397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315885937&rft_id=info:pmid/31608596&rfr_iscdi=true |