Rapid, High‐Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts

Carbon‐black‐supported nanoparticles (CNPs) have attracted considerable attention for their intriguing catalytic properties and promising applications. The traditional liquid synthesis of CNPs commonly involves demanding operation conditions and complex pre‐ or post‐treatments, which are time consum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2019-11, Vol.15 (47), p.e1904881-n/a
Hauptverfasser: Zhong, Geng, Xu, Shaomao, Cui, Mingjin, Dong, Qi, Wang, Xizheng, Xia, Qinqin, Gao, Jinlong, Pei, Yong, Qiao, Yun, Pastel, Glenn, Sunaoshi, Takeshi, Yang, Bao, Hu, Liangbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 47
container_start_page e1904881
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 15
creator Zhong, Geng
Xu, Shaomao
Cui, Mingjin
Dong, Qi
Wang, Xizheng
Xia, Qinqin
Gao, Jinlong
Pei, Yong
Qiao, Yun
Pastel, Glenn
Sunaoshi, Takeshi
Yang, Bao
Hu, Liangbing
description Carbon‐black‐supported nanoparticles (CNPs) have attracted considerable attention for their intriguing catalytic properties and promising applications. The traditional liquid synthesis of CNPs commonly involves demanding operation conditions and complex pre‐ or post‐treatments, which are time consuming and energy inefficient. Herein, a rapid, scalable, and universal strategy is reported to synthesize highly dispersed metal nanoparticles embedded in a carbon matrix via microwave irradiation of carbon black with preloaded precursors. By optimizing the amount of carbon black, the microwave absorption is dramatically improved while the thermal dissipation is effectively controlled, leading to a rapid temperature increase in carbon black, ramping to 1270 K in just 6 s. The whole synthesis process requires no capping agents or surfactants, nor tedious pre‐ or post‐treatments of carbon black, showing tremendous potential for mass production. As a proof of concept, the synthesis of ultrafine Ru nanoparticles (≈2.57 nm) uniformly embedded in carbon black using this microwave heating technique is demonstrated, which displays remarkable electrocatalytic performance when used as the cathode in a Li–O2 battery. This microwave heating method can be extended to the synthesis of other nanoparticles, thereby providing a general methodology for the mass production of carbon‐supported catalytic nanoparticles. A rapid, in situ high‐temperature microwave heating strategy is reported for the synthesis of carbon‐supported nanocatalysts. The temperature of this method reaches up to 1270 K in 6 s. The optimized loading amount of the carbon black is crucial to achieve the rapid high‐temperature heating.
doi_str_mv 10.1002/smll.201904881
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2305475397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305475397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4101-140150edc318b882bf9ab78c8a74ffcc63f87089c45cc299c500bc7ce07d392d3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUQC0EoqWwMqJILAxNubaT2B6hAlopgETLHDmOQ1PyIk6osvEJfCNfQqqWIrEw-Q7nHl0fhE4xjDAAuTRZmo4IYAEO53gP9bGHqe1xIvZ3M4YeOjJmCUAxcdgh6lHsAXeF10f-kyyTaGhNkpfF18fnXGelrmTdVHpoTXNrltSNdZ-oqljJd23N2rxeaJMYq4it6yZ9tR5kXihZy7Q1tTlGB7FMjT7ZvgP0fHszH09s__FuOr7ybeVgwDZ2ALugI0UxDzknYSxkyLjikjlxrJRHY86AC-W4ShEhlAsQKqY0sIgKEtEButh4y6p4a7SpgywxSqepzHXRmIBQcB3mUsE69PwPuiyaKu-u6yjs8q4CXVOjDdV91JhKx0FZJZms2gBDsO4crDsHu87dwtlW24SZjnb4T9gOEBtglaS6_UcXzO59_1f-DfxkicM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315885937</pqid></control><display><type>article</type><title>Rapid, High‐Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts</title><source>Wiley Online Library All Journals</source><creator>Zhong, Geng ; Xu, Shaomao ; Cui, Mingjin ; Dong, Qi ; Wang, Xizheng ; Xia, Qinqin ; Gao, Jinlong ; Pei, Yong ; Qiao, Yun ; Pastel, Glenn ; Sunaoshi, Takeshi ; Yang, Bao ; Hu, Liangbing</creator><creatorcontrib>Zhong, Geng ; Xu, Shaomao ; Cui, Mingjin ; Dong, Qi ; Wang, Xizheng ; Xia, Qinqin ; Gao, Jinlong ; Pei, Yong ; Qiao, Yun ; Pastel, Glenn ; Sunaoshi, Takeshi ; Yang, Bao ; Hu, Liangbing</creatorcontrib><description>Carbon‐black‐supported nanoparticles (CNPs) have attracted considerable attention for their intriguing catalytic properties and promising applications. The traditional liquid synthesis of CNPs commonly involves demanding operation conditions and complex pre‐ or post‐treatments, which are time consuming and energy inefficient. Herein, a rapid, scalable, and universal strategy is reported to synthesize highly dispersed metal nanoparticles embedded in a carbon matrix via microwave irradiation of carbon black with preloaded precursors. By optimizing the amount of carbon black, the microwave absorption is dramatically improved while the thermal dissipation is effectively controlled, leading to a rapid temperature increase in carbon black, ramping to 1270 K in just 6 s. The whole synthesis process requires no capping agents or surfactants, nor tedious pre‐ or post‐treatments of carbon black, showing tremendous potential for mass production. As a proof of concept, the synthesis of ultrafine Ru nanoparticles (≈2.57 nm) uniformly embedded in carbon black using this microwave heating technique is demonstrated, which displays remarkable electrocatalytic performance when used as the cathode in a Li–O2 battery. This microwave heating method can be extended to the synthesis of other nanoparticles, thereby providing a general methodology for the mass production of carbon‐supported catalytic nanoparticles. A rapid, in situ high‐temperature microwave heating strategy is reported for the synthesis of carbon‐supported nanocatalysts. The temperature of this method reaches up to 1270 K in 6 s. The optimized loading amount of the carbon black is crucial to achieve the rapid high‐temperature heating.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201904881</identifier><identifier>PMID: 31608596</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Carbon black ; Heating ; high temperature ; in situ heating ; Li–O2 batteries ; Mass production ; Microwave absorption ; Microwave heating ; microwave synthesis ; nanocatalysts ; Nanoparticles ; Nanotechnology ; Ultrafines</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2019-11, Vol.15 (47), p.e1904881-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4101-140150edc318b882bf9ab78c8a74ffcc63f87089c45cc299c500bc7ce07d392d3</citedby><cites>FETCH-LOGICAL-c4101-140150edc318b882bf9ab78c8a74ffcc63f87089c45cc299c500bc7ce07d392d3</cites><orcidid>0000-0002-9456-9315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201904881$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201904881$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31608596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Geng</creatorcontrib><creatorcontrib>Xu, Shaomao</creatorcontrib><creatorcontrib>Cui, Mingjin</creatorcontrib><creatorcontrib>Dong, Qi</creatorcontrib><creatorcontrib>Wang, Xizheng</creatorcontrib><creatorcontrib>Xia, Qinqin</creatorcontrib><creatorcontrib>Gao, Jinlong</creatorcontrib><creatorcontrib>Pei, Yong</creatorcontrib><creatorcontrib>Qiao, Yun</creatorcontrib><creatorcontrib>Pastel, Glenn</creatorcontrib><creatorcontrib>Sunaoshi, Takeshi</creatorcontrib><creatorcontrib>Yang, Bao</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><title>Rapid, High‐Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Carbon‐black‐supported nanoparticles (CNPs) have attracted considerable attention for their intriguing catalytic properties and promising applications. The traditional liquid synthesis of CNPs commonly involves demanding operation conditions and complex pre‐ or post‐treatments, which are time consuming and energy inefficient. Herein, a rapid, scalable, and universal strategy is reported to synthesize highly dispersed metal nanoparticles embedded in a carbon matrix via microwave irradiation of carbon black with preloaded precursors. By optimizing the amount of carbon black, the microwave absorption is dramatically improved while the thermal dissipation is effectively controlled, leading to a rapid temperature increase in carbon black, ramping to 1270 K in just 6 s. The whole synthesis process requires no capping agents or surfactants, nor tedious pre‐ or post‐treatments of carbon black, showing tremendous potential for mass production. As a proof of concept, the synthesis of ultrafine Ru nanoparticles (≈2.57 nm) uniformly embedded in carbon black using this microwave heating technique is demonstrated, which displays remarkable electrocatalytic performance when used as the cathode in a Li–O2 battery. This microwave heating method can be extended to the synthesis of other nanoparticles, thereby providing a general methodology for the mass production of carbon‐supported catalytic nanoparticles. A rapid, in situ high‐temperature microwave heating strategy is reported for the synthesis of carbon‐supported nanocatalysts. The temperature of this method reaches up to 1270 K in 6 s. The optimized loading amount of the carbon black is crucial to achieve the rapid high‐temperature heating.</description><subject>Carbon</subject><subject>Carbon black</subject><subject>Heating</subject><subject>high temperature</subject><subject>in situ heating</subject><subject>Li–O2 batteries</subject><subject>Mass production</subject><subject>Microwave absorption</subject><subject>Microwave heating</subject><subject>microwave synthesis</subject><subject>nanocatalysts</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Ultrafines</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUQC0EoqWwMqJILAxNubaT2B6hAlopgETLHDmOQ1PyIk6osvEJfCNfQqqWIrEw-Q7nHl0fhE4xjDAAuTRZmo4IYAEO53gP9bGHqe1xIvZ3M4YeOjJmCUAxcdgh6lHsAXeF10f-kyyTaGhNkpfF18fnXGelrmTdVHpoTXNrltSNdZ-oqljJd23N2rxeaJMYq4it6yZ9tR5kXihZy7Q1tTlGB7FMjT7ZvgP0fHszH09s__FuOr7ybeVgwDZ2ALugI0UxDzknYSxkyLjikjlxrJRHY86AC-W4ShEhlAsQKqY0sIgKEtEButh4y6p4a7SpgywxSqepzHXRmIBQcB3mUsE69PwPuiyaKu-u6yjs8q4CXVOjDdV91JhKx0FZJZms2gBDsO4crDsHu87dwtlW24SZjnb4T9gOEBtglaS6_UcXzO59_1f-DfxkicM</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zhong, Geng</creator><creator>Xu, Shaomao</creator><creator>Cui, Mingjin</creator><creator>Dong, Qi</creator><creator>Wang, Xizheng</creator><creator>Xia, Qinqin</creator><creator>Gao, Jinlong</creator><creator>Pei, Yong</creator><creator>Qiao, Yun</creator><creator>Pastel, Glenn</creator><creator>Sunaoshi, Takeshi</creator><creator>Yang, Bao</creator><creator>Hu, Liangbing</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9456-9315</orcidid></search><sort><creationdate>20191101</creationdate><title>Rapid, High‐Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts</title><author>Zhong, Geng ; Xu, Shaomao ; Cui, Mingjin ; Dong, Qi ; Wang, Xizheng ; Xia, Qinqin ; Gao, Jinlong ; Pei, Yong ; Qiao, Yun ; Pastel, Glenn ; Sunaoshi, Takeshi ; Yang, Bao ; Hu, Liangbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4101-140150edc318b882bf9ab78c8a74ffcc63f87089c45cc299c500bc7ce07d392d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Carbon black</topic><topic>Heating</topic><topic>high temperature</topic><topic>in situ heating</topic><topic>Li–O2 batteries</topic><topic>Mass production</topic><topic>Microwave absorption</topic><topic>Microwave heating</topic><topic>microwave synthesis</topic><topic>nanocatalysts</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Geng</creatorcontrib><creatorcontrib>Xu, Shaomao</creatorcontrib><creatorcontrib>Cui, Mingjin</creatorcontrib><creatorcontrib>Dong, Qi</creatorcontrib><creatorcontrib>Wang, Xizheng</creatorcontrib><creatorcontrib>Xia, Qinqin</creatorcontrib><creatorcontrib>Gao, Jinlong</creatorcontrib><creatorcontrib>Pei, Yong</creatorcontrib><creatorcontrib>Qiao, Yun</creatorcontrib><creatorcontrib>Pastel, Glenn</creatorcontrib><creatorcontrib>Sunaoshi, Takeshi</creatorcontrib><creatorcontrib>Yang, Bao</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Geng</au><au>Xu, Shaomao</au><au>Cui, Mingjin</au><au>Dong, Qi</au><au>Wang, Xizheng</au><au>Xia, Qinqin</au><au>Gao, Jinlong</au><au>Pei, Yong</au><au>Qiao, Yun</au><au>Pastel, Glenn</au><au>Sunaoshi, Takeshi</au><au>Yang, Bao</au><au>Hu, Liangbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid, High‐Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>15</volume><issue>47</issue><spage>e1904881</spage><epage>n/a</epage><pages>e1904881-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Carbon‐black‐supported nanoparticles (CNPs) have attracted considerable attention for their intriguing catalytic properties and promising applications. The traditional liquid synthesis of CNPs commonly involves demanding operation conditions and complex pre‐ or post‐treatments, which are time consuming and energy inefficient. Herein, a rapid, scalable, and universal strategy is reported to synthesize highly dispersed metal nanoparticles embedded in a carbon matrix via microwave irradiation of carbon black with preloaded precursors. By optimizing the amount of carbon black, the microwave absorption is dramatically improved while the thermal dissipation is effectively controlled, leading to a rapid temperature increase in carbon black, ramping to 1270 K in just 6 s. The whole synthesis process requires no capping agents or surfactants, nor tedious pre‐ or post‐treatments of carbon black, showing tremendous potential for mass production. As a proof of concept, the synthesis of ultrafine Ru nanoparticles (≈2.57 nm) uniformly embedded in carbon black using this microwave heating technique is demonstrated, which displays remarkable electrocatalytic performance when used as the cathode in a Li–O2 battery. This microwave heating method can be extended to the synthesis of other nanoparticles, thereby providing a general methodology for the mass production of carbon‐supported catalytic nanoparticles. A rapid, in situ high‐temperature microwave heating strategy is reported for the synthesis of carbon‐supported nanocatalysts. The temperature of this method reaches up to 1270 K in 6 s. The optimized loading amount of the carbon black is crucial to achieve the rapid high‐temperature heating.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31608596</pmid><doi>10.1002/smll.201904881</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9456-9315</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2019-11, Vol.15 (47), p.e1904881-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2305475397
source Wiley Online Library All Journals
subjects Carbon
Carbon black
Heating
high temperature
in situ heating
Li–O2 batteries
Mass production
Microwave absorption
Microwave heating
microwave synthesis
nanocatalysts
Nanoparticles
Nanotechnology
Ultrafines
title Rapid, High‐Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid,%20High%E2%80%90Temperature,%20In%20Situ%20Microwave%20Synthesis%20of%20Bulk%20Nanocatalysts&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhong,%20Geng&rft.date=2019-11-01&rft.volume=15&rft.issue=47&rft.spage=e1904881&rft.epage=n/a&rft.pages=e1904881-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201904881&rft_dat=%3Cproquest_cross%3E2305475397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315885937&rft_id=info:pmid/31608596&rfr_iscdi=true