Understanding hemicellulose-cellulose interactions in cellulose nanofibril-based composites

[Display omitted] Plant-based polysaccharides (cellulose and hemicellulose) are a very interesting option for the preparation of sustainable composite materials to replace fossil plastics, but the optimum bonding mechanism between the hard and soft components is still not well known. In this work, c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2019-11, Vol.555, p.104-114
Hauptverfasser: Lucenius, Jessica, Valle-Delgado, Juan José, Parikka, Kirsti, Österberg, Monika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue
container_start_page 104
container_title Journal of colloid and interface science
container_volume 555
creator Lucenius, Jessica
Valle-Delgado, Juan José
Parikka, Kirsti
Österberg, Monika
description [Display omitted] Plant-based polysaccharides (cellulose and hemicellulose) are a very interesting option for the preparation of sustainable composite materials to replace fossil plastics, but the optimum bonding mechanism between the hard and soft components is still not well known. In this work, composite films made of cellulose nanofibrils (CNF) and various modified and unmodified polysaccharides (galactoglucomannan, GGM; hydrolyzed and oxidized guar gum, GGhydHox; and guar gum grafted with polyethylene glycol, GG-g-PEG) were characterized from the nano- to macroscopic level to better understand how the interactions between the composite components at nano/microscale affect macroscopic mechanical properties, like toughness and strength. All the polysaccharides studied adsorbed well on CNF, although with different adsorption rates, as measured by quartz crystal microbalance with dissipation monitoring (QCM-D). Direct surface and friction force experiments using the colloidal probe technique revealed that the adsorbed polysaccharides provided repulsive forces–well described by a polyelectrolyte brush model – and a moderate reduction in friction between cellulose surfaces, which may prevent CNF aggregates during composite formation and, consequently, enhance the strength of dry films. High affinity for cellulose and moderate hydration were found to be important requirements for polysaccharides to improve the mechanical properties of CNF-based composites in wet conditions. The results of this work provide fundamental information on hemicellulose-cellulose interactions and can support the development of polysaccharide-based materials for different packaging and medical applications.
doi_str_mv 10.1016/j.jcis.2019.07.053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2305162285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979719308331</els_id><sourcerecordid>2305162285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-cf015fdd95a7260378153f338e11d6d3eb1182114c5fdf43df430fcfc45d0b553</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EouXjDzCgjiwJd3EdNxILQnxJlVhgYrAS-wyuErvYKRL_nkQtsDFYZ-uee3V-GDtDyBGwvFzlK-1SXgBWOcgcBN9jU4RKZBKB77MpQIFZJSs5YUcprQAQhagO2YQjl7Lk5ZS9vnhDMfW1N86_zd6pc5radtOGRNnvbeZ8T7HWvQs-DY_ZX8fXPljXRNdmTZ3IzHTo1iG5ntIJO7B1m-h0V4_Zy93t881Dtny6f7y5XmZ6LqHPtAUU1phK1LIogcsFCm45XxCiKQ2nBnFRIM71QNk5Hw9YbfVcGGiE4MfsYpu7juFjQ6lXnUvjhrWnsEmq4CCwLIrFiBZbVMeQUiSr1tF1dfxSCGqUqlZqlKpGqQqkGqQOQ-e7_E3Tkfkd-bE4AFdbgIZffjqKKmlHXpNxkXSvTHD_5X8DjSGKfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305162285</pqid></control><display><type>article</type><title>Understanding hemicellulose-cellulose interactions in cellulose nanofibril-based composites</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lucenius, Jessica ; Valle-Delgado, Juan José ; Parikka, Kirsti ; Österberg, Monika</creator><creatorcontrib>Lucenius, Jessica ; Valle-Delgado, Juan José ; Parikka, Kirsti ; Österberg, Monika</creatorcontrib><description>[Display omitted] Plant-based polysaccharides (cellulose and hemicellulose) are a very interesting option for the preparation of sustainable composite materials to replace fossil plastics, but the optimum bonding mechanism between the hard and soft components is still not well known. In this work, composite films made of cellulose nanofibrils (CNF) and various modified and unmodified polysaccharides (galactoglucomannan, GGM; hydrolyzed and oxidized guar gum, GGhydHox; and guar gum grafted with polyethylene glycol, GG-g-PEG) were characterized from the nano- to macroscopic level to better understand how the interactions between the composite components at nano/microscale affect macroscopic mechanical properties, like toughness and strength. All the polysaccharides studied adsorbed well on CNF, although with different adsorption rates, as measured by quartz crystal microbalance with dissipation monitoring (QCM-D). Direct surface and friction force experiments using the colloidal probe technique revealed that the adsorbed polysaccharides provided repulsive forces–well described by a polyelectrolyte brush model – and a moderate reduction in friction between cellulose surfaces, which may prevent CNF aggregates during composite formation and, consequently, enhance the strength of dry films. High affinity for cellulose and moderate hydration were found to be important requirements for polysaccharides to improve the mechanical properties of CNF-based composites in wet conditions. The results of this work provide fundamental information on hemicellulose-cellulose interactions and can support the development of polysaccharide-based materials for different packaging and medical applications.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2019.07.053</identifier><identifier>PMID: 31377636</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adsorption ; Biocomposites ; cellulose ; Cellulose - chemistry ; cellulose nanofibers ; Cellulose nanofibrils ; Colloidal probe microscopy (CPM) ; electrolytes ; fossils ; Friction ; guar gum ; Hemicellulose ; Nanofibers - chemistry ; Particle Size ; polyethylene glycol ; Polysaccharides - chemistry ; quartz crystal microbalance ; Quartz crystal microbalance with dissipation (QCM-D) ; Surface forces ; Surface Properties ; Wet strength</subject><ispartof>Journal of colloid and interface science, 2019-11, Vol.555, p.104-114</ispartof><rights>2019 The Authors</rights><rights>Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-cf015fdd95a7260378153f338e11d6d3eb1182114c5fdf43df430fcfc45d0b553</citedby><cites>FETCH-LOGICAL-c470t-cf015fdd95a7260378153f338e11d6d3eb1182114c5fdf43df430fcfc45d0b553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979719308331$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31377636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucenius, Jessica</creatorcontrib><creatorcontrib>Valle-Delgado, Juan José</creatorcontrib><creatorcontrib>Parikka, Kirsti</creatorcontrib><creatorcontrib>Österberg, Monika</creatorcontrib><title>Understanding hemicellulose-cellulose interactions in cellulose nanofibril-based composites</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] Plant-based polysaccharides (cellulose and hemicellulose) are a very interesting option for the preparation of sustainable composite materials to replace fossil plastics, but the optimum bonding mechanism between the hard and soft components is still not well known. In this work, composite films made of cellulose nanofibrils (CNF) and various modified and unmodified polysaccharides (galactoglucomannan, GGM; hydrolyzed and oxidized guar gum, GGhydHox; and guar gum grafted with polyethylene glycol, GG-g-PEG) were characterized from the nano- to macroscopic level to better understand how the interactions between the composite components at nano/microscale affect macroscopic mechanical properties, like toughness and strength. All the polysaccharides studied adsorbed well on CNF, although with different adsorption rates, as measured by quartz crystal microbalance with dissipation monitoring (QCM-D). Direct surface and friction force experiments using the colloidal probe technique revealed that the adsorbed polysaccharides provided repulsive forces–well described by a polyelectrolyte brush model – and a moderate reduction in friction between cellulose surfaces, which may prevent CNF aggregates during composite formation and, consequently, enhance the strength of dry films. High affinity for cellulose and moderate hydration were found to be important requirements for polysaccharides to improve the mechanical properties of CNF-based composites in wet conditions. The results of this work provide fundamental information on hemicellulose-cellulose interactions and can support the development of polysaccharide-based materials for different packaging and medical applications.</description><subject>adsorption</subject><subject>Biocomposites</subject><subject>cellulose</subject><subject>Cellulose - chemistry</subject><subject>cellulose nanofibers</subject><subject>Cellulose nanofibrils</subject><subject>Colloidal probe microscopy (CPM)</subject><subject>electrolytes</subject><subject>fossils</subject><subject>Friction</subject><subject>guar gum</subject><subject>Hemicellulose</subject><subject>Nanofibers - chemistry</subject><subject>Particle Size</subject><subject>polyethylene glycol</subject><subject>Polysaccharides - chemistry</subject><subject>quartz crystal microbalance</subject><subject>Quartz crystal microbalance with dissipation (QCM-D)</subject><subject>Surface forces</subject><subject>Surface Properties</subject><subject>Wet strength</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EouXjDzCgjiwJd3EdNxILQnxJlVhgYrAS-wyuErvYKRL_nkQtsDFYZ-uee3V-GDtDyBGwvFzlK-1SXgBWOcgcBN9jU4RKZBKB77MpQIFZJSs5YUcprQAQhagO2YQjl7Lk5ZS9vnhDMfW1N86_zd6pc5radtOGRNnvbeZ8T7HWvQs-DY_ZX8fXPljXRNdmTZ3IzHTo1iG5ntIJO7B1m-h0V4_Zy93t881Dtny6f7y5XmZ6LqHPtAUU1phK1LIogcsFCm45XxCiKQ2nBnFRIM71QNk5Hw9YbfVcGGiE4MfsYpu7juFjQ6lXnUvjhrWnsEmq4CCwLIrFiBZbVMeQUiSr1tF1dfxSCGqUqlZqlKpGqQqkGqQOQ-e7_E3Tkfkd-bE4AFdbgIZffjqKKmlHXpNxkXSvTHD_5X8DjSGKfA</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Lucenius, Jessica</creator><creator>Valle-Delgado, Juan José</creator><creator>Parikka, Kirsti</creator><creator>Österberg, Monika</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20191101</creationdate><title>Understanding hemicellulose-cellulose interactions in cellulose nanofibril-based composites</title><author>Lucenius, Jessica ; Valle-Delgado, Juan José ; Parikka, Kirsti ; Österberg, Monika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-cf015fdd95a7260378153f338e11d6d3eb1182114c5fdf43df430fcfc45d0b553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>adsorption</topic><topic>Biocomposites</topic><topic>cellulose</topic><topic>Cellulose - chemistry</topic><topic>cellulose nanofibers</topic><topic>Cellulose nanofibrils</topic><topic>Colloidal probe microscopy (CPM)</topic><topic>electrolytes</topic><topic>fossils</topic><topic>Friction</topic><topic>guar gum</topic><topic>Hemicellulose</topic><topic>Nanofibers - chemistry</topic><topic>Particle Size</topic><topic>polyethylene glycol</topic><topic>Polysaccharides - chemistry</topic><topic>quartz crystal microbalance</topic><topic>Quartz crystal microbalance with dissipation (QCM-D)</topic><topic>Surface forces</topic><topic>Surface Properties</topic><topic>Wet strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucenius, Jessica</creatorcontrib><creatorcontrib>Valle-Delgado, Juan José</creatorcontrib><creatorcontrib>Parikka, Kirsti</creatorcontrib><creatorcontrib>Österberg, Monika</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucenius, Jessica</au><au>Valle-Delgado, Juan José</au><au>Parikka, Kirsti</au><au>Österberg, Monika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding hemicellulose-cellulose interactions in cellulose nanofibril-based composites</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>555</volume><spage>104</spage><epage>114</epage><pages>104-114</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Plant-based polysaccharides (cellulose and hemicellulose) are a very interesting option for the preparation of sustainable composite materials to replace fossil plastics, but the optimum bonding mechanism between the hard and soft components is still not well known. In this work, composite films made of cellulose nanofibrils (CNF) and various modified and unmodified polysaccharides (galactoglucomannan, GGM; hydrolyzed and oxidized guar gum, GGhydHox; and guar gum grafted with polyethylene glycol, GG-g-PEG) were characterized from the nano- to macroscopic level to better understand how the interactions between the composite components at nano/microscale affect macroscopic mechanical properties, like toughness and strength. All the polysaccharides studied adsorbed well on CNF, although with different adsorption rates, as measured by quartz crystal microbalance with dissipation monitoring (QCM-D). Direct surface and friction force experiments using the colloidal probe technique revealed that the adsorbed polysaccharides provided repulsive forces–well described by a polyelectrolyte brush model – and a moderate reduction in friction between cellulose surfaces, which may prevent CNF aggregates during composite formation and, consequently, enhance the strength of dry films. High affinity for cellulose and moderate hydration were found to be important requirements for polysaccharides to improve the mechanical properties of CNF-based composites in wet conditions. The results of this work provide fundamental information on hemicellulose-cellulose interactions and can support the development of polysaccharide-based materials for different packaging and medical applications.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31377636</pmid><doi>10.1016/j.jcis.2019.07.053</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2019-11, Vol.555, p.104-114
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2305162285
source MEDLINE; Elsevier ScienceDirect Journals
subjects adsorption
Biocomposites
cellulose
Cellulose - chemistry
cellulose nanofibers
Cellulose nanofibrils
Colloidal probe microscopy (CPM)
electrolytes
fossils
Friction
guar gum
Hemicellulose
Nanofibers - chemistry
Particle Size
polyethylene glycol
Polysaccharides - chemistry
quartz crystal microbalance
Quartz crystal microbalance with dissipation (QCM-D)
Surface forces
Surface Properties
Wet strength
title Understanding hemicellulose-cellulose interactions in cellulose nanofibril-based composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20hemicellulose-cellulose%20interactions%20in%20cellulose%20nanofibril-based%20composites&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Lucenius,%20Jessica&rft.date=2019-11-01&rft.volume=555&rft.spage=104&rft.epage=114&rft.pages=104-114&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2019.07.053&rft_dat=%3Cproquest_cross%3E2305162285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305162285&rft_id=info:pmid/31377636&rft_els_id=S0021979719308331&rfr_iscdi=true