ToolBox: Live Imaging of intracellular organelle transport in induced pluripotent stem cell‐derived neurons

Induced pluripotent stem cells (iPSCs) hold promise to revolutionize studies of intracellular transport in live human neurons and to shed new light on the role of dysfunctional transport in neurodegenerative disorders. Here, we describe an approach for live imaging of axonal and dendritic transport...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Traffic (Copenhagen, Denmark) Denmark), 2020-01, Vol.21 (1), p.138-155
Hauptverfasser: Boecker, Clemens Alexander, Olenick, Mara A., Gallagher, Elizabeth R., Ward, Michael E., Holzbaur, Erika L. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 1
container_start_page 138
container_title Traffic (Copenhagen, Denmark)
container_volume 21
creator Boecker, Clemens Alexander
Olenick, Mara A.
Gallagher, Elizabeth R.
Ward, Michael E.
Holzbaur, Erika L. F.
description Induced pluripotent stem cells (iPSCs) hold promise to revolutionize studies of intracellular transport in live human neurons and to shed new light on the role of dysfunctional transport in neurodegenerative disorders. Here, we describe an approach for live imaging of axonal and dendritic transport in iPSC‐derived cortical neurons. We use transfection and transient expression of genetically‐encoded fluorescent markers to characterize the motility of Rab‐positive vesicles, including early, late and recycling endosomes, as well as autophagosomes and mitochondria in iPSC‐derived neurons. Comparing transport parameters of these organelles with data from primary rat hippocampal neurons, we uncover remarkable similarities. In addition, we generated lysosomal‐associated membrane protein 1 (LAMP1)‐enhanced green fluorescent protein (EGFP) knock‐in iPSCs and show that knock‐in neurons can be used to study the transport of endogenously labeled vesicles, as a parallel approach to the transient overexpression of fluorescently labeled organelle markers. Induced pluripotent stem cells (iPSCs) hold promise to revolutionize studies of intracellular transport in human neurons. Here, we describe an approach for live‐imaging axonal and dendritic transport in iPSC‐derived cortical neurons. We characterize the motility of endosomes, autophagosomes and mitochondria. Comparing transport parameters of these organelles with data from rat hippocampal neurons, we uncover remarkable similarities. Furthermore, we generated lysosomal‐associated membrane protein 1 (LAMP1)‐enhanced green fluorescent protein (EGFP) knock‐in iPSCs and show that knock‐in neurons can be used to study transport of endogenously labeled vesicles.
doi_str_mv 10.1111/tra.12701
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2305030740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305030740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-d21fe5e29b05c25bc197ff8bff5fa6fa5cb299cb598594ab4035d87d522e37873</originalsourceid><addsrcrecordid>eNp1kc1KxDAQgIMo7rp68AUk4EUPdfPTbBNvq_gHC4Ks55K2yVJpm5q06t58BJ_RJ3HWXT0IhkAm4ZuPyQxCh5ScUVjjzuszyhJCt9CQTgiJiBTxNsRcyUgxqgZoL4QnQggTcbyLBhwoPqHxENVz56oL93aOZ-WLwXe1XpTNAjuLywa0uamqvtIeO7_QDVwMhtcmtM53QMAu-twUuK16X7auM02HQ2dqvEr8fP8ojAdtgRvTe9eEfbRjdRXMweYcocfrq_nlbTS7v7m7nM6inEtJo4JRa4RhKiMiZyLLqUqslZm1wuqJ1SLPmFJ5JpQUKtZZTLgoZFIIxgxPZMJH6GTtbb177k3o0roMq5LgD64PKeNEEE4SSByh4z_ok-t9A9UBxSSLFVUCqNM1lXsXgjc2bX1Za79MKUlXM0ihLen3DIA92hj7rDbFL_nTdADGa-C1rMzyf1M6f5iulV_IvpJ5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328249195</pqid></control><display><type>article</type><title>ToolBox: Live Imaging of intracellular organelle transport in induced pluripotent stem cell‐derived neurons</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Boecker, Clemens Alexander ; Olenick, Mara A. ; Gallagher, Elizabeth R. ; Ward, Michael E. ; Holzbaur, Erika L. F.</creator><creatorcontrib>Boecker, Clemens Alexander ; Olenick, Mara A. ; Gallagher, Elizabeth R. ; Ward, Michael E. ; Holzbaur, Erika L. F.</creatorcontrib><description>Induced pluripotent stem cells (iPSCs) hold promise to revolutionize studies of intracellular transport in live human neurons and to shed new light on the role of dysfunctional transport in neurodegenerative disorders. Here, we describe an approach for live imaging of axonal and dendritic transport in iPSC‐derived cortical neurons. We use transfection and transient expression of genetically‐encoded fluorescent markers to characterize the motility of Rab‐positive vesicles, including early, late and recycling endosomes, as well as autophagosomes and mitochondria in iPSC‐derived neurons. Comparing transport parameters of these organelles with data from primary rat hippocampal neurons, we uncover remarkable similarities. In addition, we generated lysosomal‐associated membrane protein 1 (LAMP1)‐enhanced green fluorescent protein (EGFP) knock‐in iPSCs and show that knock‐in neurons can be used to study the transport of endogenously labeled vesicles, as a parallel approach to the transient overexpression of fluorescently labeled organelle markers. Induced pluripotent stem cells (iPSCs) hold promise to revolutionize studies of intracellular transport in human neurons. Here, we describe an approach for live‐imaging axonal and dendritic transport in iPSC‐derived cortical neurons. We characterize the motility of endosomes, autophagosomes and mitochondria. Comparing transport parameters of these organelles with data from rat hippocampal neurons, we uncover remarkable similarities. Furthermore, we generated lysosomal‐associated membrane protein 1 (LAMP1)‐enhanced green fluorescent protein (EGFP) knock‐in iPSCs and show that knock‐in neurons can be used to study transport of endogenously labeled vesicles.</description><identifier>ISSN: 1398-9219</identifier><identifier>EISSN: 1600-0854</identifier><identifier>DOI: 10.1111/tra.12701</identifier><identifier>PMID: 31603614</identifier><language>eng</language><publisher>Former Munksgaard: John Wiley &amp; Sons A/S</publisher><subject>Animals ; Axonal transport ; Axons - metabolism ; Biological Transport ; Cells, Cultured ; Dendritic transport ; Endosomes ; Fluorescent indicators ; Green fluorescent protein ; Hippocampus ; Induced Pluripotent Stem Cells ; Inhibitory postsynaptic potentials ; Intracellular ; iPSCs ; iPSC‐derived neurons ; live imaging ; Membrane proteins ; Mitochondria ; Neurodegenerative diseases ; Neurons ; NGN2 ; Organelles ; Phagosomes ; Pluripotency ; Protein turnover ; Rats ; Stem cell transplantation ; Stem cells ; Transfection ; Vesicles</subject><ispartof>Traffic (Copenhagen, Denmark), 2020-01, Vol.21 (1), p.138-155</ispartof><rights>2019 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><rights>2019 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><rights>2020 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-d21fe5e29b05c25bc197ff8bff5fa6fa5cb299cb598594ab4035d87d522e37873</citedby><cites>FETCH-LOGICAL-c3881-d21fe5e29b05c25bc197ff8bff5fa6fa5cb299cb598594ab4035d87d522e37873</cites><orcidid>0000-0001-5389-4114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftra.12701$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftra.12701$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31603614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boecker, Clemens Alexander</creatorcontrib><creatorcontrib>Olenick, Mara A.</creatorcontrib><creatorcontrib>Gallagher, Elizabeth R.</creatorcontrib><creatorcontrib>Ward, Michael E.</creatorcontrib><creatorcontrib>Holzbaur, Erika L. F.</creatorcontrib><title>ToolBox: Live Imaging of intracellular organelle transport in induced pluripotent stem cell‐derived neurons</title><title>Traffic (Copenhagen, Denmark)</title><addtitle>Traffic</addtitle><description>Induced pluripotent stem cells (iPSCs) hold promise to revolutionize studies of intracellular transport in live human neurons and to shed new light on the role of dysfunctional transport in neurodegenerative disorders. Here, we describe an approach for live imaging of axonal and dendritic transport in iPSC‐derived cortical neurons. We use transfection and transient expression of genetically‐encoded fluorescent markers to characterize the motility of Rab‐positive vesicles, including early, late and recycling endosomes, as well as autophagosomes and mitochondria in iPSC‐derived neurons. Comparing transport parameters of these organelles with data from primary rat hippocampal neurons, we uncover remarkable similarities. In addition, we generated lysosomal‐associated membrane protein 1 (LAMP1)‐enhanced green fluorescent protein (EGFP) knock‐in iPSCs and show that knock‐in neurons can be used to study the transport of endogenously labeled vesicles, as a parallel approach to the transient overexpression of fluorescently labeled organelle markers. Induced pluripotent stem cells (iPSCs) hold promise to revolutionize studies of intracellular transport in human neurons. Here, we describe an approach for live‐imaging axonal and dendritic transport in iPSC‐derived cortical neurons. We characterize the motility of endosomes, autophagosomes and mitochondria. Comparing transport parameters of these organelles with data from rat hippocampal neurons, we uncover remarkable similarities. Furthermore, we generated lysosomal‐associated membrane protein 1 (LAMP1)‐enhanced green fluorescent protein (EGFP) knock‐in iPSCs and show that knock‐in neurons can be used to study transport of endogenously labeled vesicles.</description><subject>Animals</subject><subject>Axonal transport</subject><subject>Axons - metabolism</subject><subject>Biological Transport</subject><subject>Cells, Cultured</subject><subject>Dendritic transport</subject><subject>Endosomes</subject><subject>Fluorescent indicators</subject><subject>Green fluorescent protein</subject><subject>Hippocampus</subject><subject>Induced Pluripotent Stem Cells</subject><subject>Inhibitory postsynaptic potentials</subject><subject>Intracellular</subject><subject>iPSCs</subject><subject>iPSC‐derived neurons</subject><subject>live imaging</subject><subject>Membrane proteins</subject><subject>Mitochondria</subject><subject>Neurodegenerative diseases</subject><subject>Neurons</subject><subject>NGN2</subject><subject>Organelles</subject><subject>Phagosomes</subject><subject>Pluripotency</subject><subject>Protein turnover</subject><subject>Rats</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Transfection</subject><subject>Vesicles</subject><issn>1398-9219</issn><issn>1600-0854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1KxDAQgIMo7rp68AUk4EUPdfPTbBNvq_gHC4Ks55K2yVJpm5q06t58BJ_RJ3HWXT0IhkAm4ZuPyQxCh5ScUVjjzuszyhJCt9CQTgiJiBTxNsRcyUgxqgZoL4QnQggTcbyLBhwoPqHxENVz56oL93aOZ-WLwXe1XpTNAjuLywa0uamqvtIeO7_QDVwMhtcmtM53QMAu-twUuK16X7auM02HQ2dqvEr8fP8ojAdtgRvTe9eEfbRjdRXMweYcocfrq_nlbTS7v7m7nM6inEtJo4JRa4RhKiMiZyLLqUqslZm1wuqJ1SLPmFJ5JpQUKtZZTLgoZFIIxgxPZMJH6GTtbb177k3o0roMq5LgD64PKeNEEE4SSByh4z_ok-t9A9UBxSSLFVUCqNM1lXsXgjc2bX1Za79MKUlXM0ihLen3DIA92hj7rDbFL_nTdADGa-C1rMzyf1M6f5iulV_IvpJ5</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Boecker, Clemens Alexander</creator><creator>Olenick, Mara A.</creator><creator>Gallagher, Elizabeth R.</creator><creator>Ward, Michael E.</creator><creator>Holzbaur, Erika L. F.</creator><general>John Wiley &amp; Sons A/S</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5389-4114</orcidid></search><sort><creationdate>202001</creationdate><title>ToolBox: Live Imaging of intracellular organelle transport in induced pluripotent stem cell‐derived neurons</title><author>Boecker, Clemens Alexander ; Olenick, Mara A. ; Gallagher, Elizabeth R. ; Ward, Michael E. ; Holzbaur, Erika L. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-d21fe5e29b05c25bc197ff8bff5fa6fa5cb299cb598594ab4035d87d522e37873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Axonal transport</topic><topic>Axons - metabolism</topic><topic>Biological Transport</topic><topic>Cells, Cultured</topic><topic>Dendritic transport</topic><topic>Endosomes</topic><topic>Fluorescent indicators</topic><topic>Green fluorescent protein</topic><topic>Hippocampus</topic><topic>Induced Pluripotent Stem Cells</topic><topic>Inhibitory postsynaptic potentials</topic><topic>Intracellular</topic><topic>iPSCs</topic><topic>iPSC‐derived neurons</topic><topic>live imaging</topic><topic>Membrane proteins</topic><topic>Mitochondria</topic><topic>Neurodegenerative diseases</topic><topic>Neurons</topic><topic>NGN2</topic><topic>Organelles</topic><topic>Phagosomes</topic><topic>Pluripotency</topic><topic>Protein turnover</topic><topic>Rats</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Transfection</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boecker, Clemens Alexander</creatorcontrib><creatorcontrib>Olenick, Mara A.</creatorcontrib><creatorcontrib>Gallagher, Elizabeth R.</creatorcontrib><creatorcontrib>Ward, Michael E.</creatorcontrib><creatorcontrib>Holzbaur, Erika L. F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Traffic (Copenhagen, Denmark)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boecker, Clemens Alexander</au><au>Olenick, Mara A.</au><au>Gallagher, Elizabeth R.</au><au>Ward, Michael E.</au><au>Holzbaur, Erika L. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ToolBox: Live Imaging of intracellular organelle transport in induced pluripotent stem cell‐derived neurons</atitle><jtitle>Traffic (Copenhagen, Denmark)</jtitle><addtitle>Traffic</addtitle><date>2020-01</date><risdate>2020</risdate><volume>21</volume><issue>1</issue><spage>138</spage><epage>155</epage><pages>138-155</pages><issn>1398-9219</issn><eissn>1600-0854</eissn><abstract>Induced pluripotent stem cells (iPSCs) hold promise to revolutionize studies of intracellular transport in live human neurons and to shed new light on the role of dysfunctional transport in neurodegenerative disorders. Here, we describe an approach for live imaging of axonal and dendritic transport in iPSC‐derived cortical neurons. We use transfection and transient expression of genetically‐encoded fluorescent markers to characterize the motility of Rab‐positive vesicles, including early, late and recycling endosomes, as well as autophagosomes and mitochondria in iPSC‐derived neurons. Comparing transport parameters of these organelles with data from primary rat hippocampal neurons, we uncover remarkable similarities. In addition, we generated lysosomal‐associated membrane protein 1 (LAMP1)‐enhanced green fluorescent protein (EGFP) knock‐in iPSCs and show that knock‐in neurons can be used to study the transport of endogenously labeled vesicles, as a parallel approach to the transient overexpression of fluorescently labeled organelle markers. Induced pluripotent stem cells (iPSCs) hold promise to revolutionize studies of intracellular transport in human neurons. Here, we describe an approach for live‐imaging axonal and dendritic transport in iPSC‐derived cortical neurons. We characterize the motility of endosomes, autophagosomes and mitochondria. Comparing transport parameters of these organelles with data from rat hippocampal neurons, we uncover remarkable similarities. Furthermore, we generated lysosomal‐associated membrane protein 1 (LAMP1)‐enhanced green fluorescent protein (EGFP) knock‐in iPSCs and show that knock‐in neurons can be used to study transport of endogenously labeled vesicles.</abstract><cop>Former Munksgaard</cop><pub>John Wiley &amp; Sons A/S</pub><pmid>31603614</pmid><doi>10.1111/tra.12701</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5389-4114</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1398-9219
ispartof Traffic (Copenhagen, Denmark), 2020-01, Vol.21 (1), p.138-155
issn 1398-9219
1600-0854
language eng
recordid cdi_proquest_miscellaneous_2305030740
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Axonal transport
Axons - metabolism
Biological Transport
Cells, Cultured
Dendritic transport
Endosomes
Fluorescent indicators
Green fluorescent protein
Hippocampus
Induced Pluripotent Stem Cells
Inhibitory postsynaptic potentials
Intracellular
iPSCs
iPSC‐derived neurons
live imaging
Membrane proteins
Mitochondria
Neurodegenerative diseases
Neurons
NGN2
Organelles
Phagosomes
Pluripotency
Protein turnover
Rats
Stem cell transplantation
Stem cells
Transfection
Vesicles
title ToolBox: Live Imaging of intracellular organelle transport in induced pluripotent stem cell‐derived neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ToolBox:%20Live%20Imaging%20of%20intracellular%20organelle%20transport%20in%20induced%20pluripotent%20stem%20cell%E2%80%90derived%20neurons&rft.jtitle=Traffic%20(Copenhagen,%20Denmark)&rft.au=Boecker,%20Clemens%20Alexander&rft.date=2020-01&rft.volume=21&rft.issue=1&rft.spage=138&rft.epage=155&rft.pages=138-155&rft.issn=1398-9219&rft.eissn=1600-0854&rft_id=info:doi/10.1111/tra.12701&rft_dat=%3Cproquest_cross%3E2305030740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2328249195&rft_id=info:pmid/31603614&rfr_iscdi=true