Tuning element distribution, structure and properties by composition in high-entropy alloys

High-entropy alloys are a class of materials that contain five or more elements in near-equiatomic proportions 1 , 2 . Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties 3 – 8 . Rational design of such alloys hinge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2019-10, Vol.574 (7777), p.223-227
Hauptverfasser: Ding, Qingqing, Zhang, Yin, Chen, Xiao, Fu, Xiaoqian, Chen, Dengke, Chen, Sijing, Gu, Lin, Wei, Fei, Bei, Hongbin, Gao, Yanfei, Wen, Minru, Li, Jixue, Zhang, Ze, Zhu, Ting, Ritchie, Robert O., Yu, Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227
container_issue 7777
container_start_page 223
container_title Nature (London)
container_volume 574
creator Ding, Qingqing
Zhang, Yin
Chen, Xiao
Fu, Xiaoqian
Chen, Dengke
Chen, Sijing
Gu, Lin
Wei, Fei
Bei, Hongbin
Gao, Yanfei
Wen, Minru
Li, Jixue
Zhang, Ze
Zhu, Ting
Ritchie, Robert O.
Yu, Qian
description High-entropy alloys are a class of materials that contain five or more elements in near-equiatomic proportions 1 , 2 . Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties 3 – 8 . Rational design of such alloys hinges on an understanding of the composition–structure–property relationships in a near-infinite compositional space 9 , 10 . Here we use atomic-resolution chemical mapping to reveal the element distribution of the widely studied face-centred cubic CrMnFeCoNi Cantor alloy 2 and of a new face-centred cubic alloy, CrFeCoNiPd. In the Cantor alloy, the distribution of the five constituent elements is relatively random and uniform. By contrast, in the CrFeCoNiPd alloy, in which the palladium atoms have a markedly different atomic size and electronegativity from the other elements, the homogeneity decreases considerably; all five elements tend to show greater aggregation, with a wavelength of incipient concentration waves 11 , 12 as small as 1 to 3 nanometres. The resulting nanoscale alternating tensile and compressive strain fields lead to considerable resistance to dislocation glide. In situ transmission electron microscopy during straining experiments reveals massive dislocation cross-slip from the early stage of plastic deformation, resulting in strong dislocation interactions between multiple slip systems. These deformation mechanisms in the CrFeCoNiPd alloy, which differ markedly from those in the Cantor alloy and other face-centred cubic high-entropy alloys, are promoted by pronounced fluctuations in composition and an increase in stacking-fault energy, leading to higher yield strength without compromising strain hardening and tensile ductility. Mapping atomic-scale element distributions opens opportunities for understanding chemical structures and thus providing a basis for tuning composition and atomic configurations to obtain outstanding mechanical properties. In high-entropy alloys, atomic-resolution chemical mapping shows that swapping some of the atoms for larger, more electronegative elements results in atomic-scale modulations that produce higher yield strength, excellent strain hardening and ductility.
doi_str_mv 10.1038/s41586-019-1617-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2303744916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A637731653</galeid><sourcerecordid>A637731653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-1feba500c7fae7800565cbbd277140c3cb52c95ca6ab74c9f489aed9f4a85f583</originalsourceid><addsrcrecordid>eNp10k-L1DAYBvAiijuufgAvUtyLolmTJk3a4zD4Z2FR0BEPHkKavu1maZNukoLz7U2Z1XVklh5S0l8eXtIny54TfE4wrd4FRsqKI0xqRDgRiDzIVoQJjhivxMNshXFRIVxRfpI9CeEaY1wSwR5nJ5SUtagFW2U_t7M1ts9hgBFszFsTojfNHI2zb_P0Pus4e8iVbfPJuwl8NBDyZpdrN04umAXmxuZXpr9CKSGZXa6Gwe3C0-xRp4YAz27X0-z7h_fbzSd0-eXjxWZ9iTRnOCLSQaNKjLXoFIgqDclL3TRtIQRhWFPdlIWuS624agTTdceqWkGbVlWVXVnR0-zVPjcNeDNDiHI0QcMwKAtuDrKgmArGasITPfuPXrvZ2zTdojgTgjNyp3o1gDS2c9ErvYTKNadCUMJLmhQ6onqw4NXgLHQmbR_4l0e8nsyN_BedH0HpaWE0-mjq64MDyUT4FXs1hyAvvn09tG_ut-vtj83nQ032WnsXgodOTt6Myu8kwXLpn9z3T6b-yaV_crm5F7f3OzcjtH9P_ClcAsUehPTJ9uDvfsD9qb8B_ybhxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306477641</pqid></control><display><type>article</type><title>Tuning element distribution, structure and properties by composition in high-entropy alloys</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Ding, Qingqing ; Zhang, Yin ; Chen, Xiao ; Fu, Xiaoqian ; Chen, Dengke ; Chen, Sijing ; Gu, Lin ; Wei, Fei ; Bei, Hongbin ; Gao, Yanfei ; Wen, Minru ; Li, Jixue ; Zhang, Ze ; Zhu, Ting ; Ritchie, Robert O. ; Yu, Qian</creator><creatorcontrib>Ding, Qingqing ; Zhang, Yin ; Chen, Xiao ; Fu, Xiaoqian ; Chen, Dengke ; Chen, Sijing ; Gu, Lin ; Wei, Fei ; Bei, Hongbin ; Gao, Yanfei ; Wen, Minru ; Li, Jixue ; Zhang, Ze ; Zhu, Ting ; Ritchie, Robert O. ; Yu, Qian</creatorcontrib><description>High-entropy alloys are a class of materials that contain five or more elements in near-equiatomic proportions 1 , 2 . Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties 3 – 8 . Rational design of such alloys hinges on an understanding of the composition–structure–property relationships in a near-infinite compositional space 9 , 10 . Here we use atomic-resolution chemical mapping to reveal the element distribution of the widely studied face-centred cubic CrMnFeCoNi Cantor alloy 2 and of a new face-centred cubic alloy, CrFeCoNiPd. In the Cantor alloy, the distribution of the five constituent elements is relatively random and uniform. By contrast, in the CrFeCoNiPd alloy, in which the palladium atoms have a markedly different atomic size and electronegativity from the other elements, the homogeneity decreases considerably; all five elements tend to show greater aggregation, with a wavelength of incipient concentration waves 11 , 12 as small as 1 to 3 nanometres. The resulting nanoscale alternating tensile and compressive strain fields lead to considerable resistance to dislocation glide. In situ transmission electron microscopy during straining experiments reveals massive dislocation cross-slip from the early stage of plastic deformation, resulting in strong dislocation interactions between multiple slip systems. These deformation mechanisms in the CrFeCoNiPd alloy, which differ markedly from those in the Cantor alloy and other face-centred cubic high-entropy alloys, are promoted by pronounced fluctuations in composition and an increase in stacking-fault energy, leading to higher yield strength without compromising strain hardening and tensile ductility. Mapping atomic-scale element distributions opens opportunities for understanding chemical structures and thus providing a basis for tuning composition and atomic configurations to obtain outstanding mechanical properties. In high-entropy alloys, atomic-resolution chemical mapping shows that swapping some of the atoms for larger, more electronegative elements results in atomic-scale modulations that produce higher yield strength, excellent strain hardening and ductility.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1617-1</identifier><identifier>PMID: 31597974</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166 ; 639/301/1023/1026 ; 639/301/1023/303 ; Alloys ; Chemical composition ; Compressive properties ; Cross slip ; Deformation ; Deformation mechanisms ; Dislocation ; Dislocations ; Distribution ; Ductility ; Electron microscopy ; Electronegativity ; Entropy ; Entropy (Physics) ; High entropy alloys ; Humanities and Social Sciences ; Intermetallic compounds ; Letter ; Mapping ; Measurement ; Mechanical properties ; Metallurgical constituents ; multidisciplinary ; Organic chemistry ; Palladium ; Plastic deformation ; Properties ; Science ; Science (multidisciplinary) ; Solid solutions ; Stacking fault energy ; Strain ; Strain hardening ; Structure ; Theory ; Transmission electron microscopy ; Tuning</subject><ispartof>Nature (London), 2019-10, Vol.574 (7777), p.223-227</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 10, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-1feba500c7fae7800565cbbd277140c3cb52c95ca6ab74c9f489aed9f4a85f583</citedby><cites>FETCH-LOGICAL-c640t-1feba500c7fae7800565cbbd277140c3cb52c95ca6ab74c9f489aed9f4a85f583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-019-1617-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-019-1617-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31597974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Qingqing</creatorcontrib><creatorcontrib>Zhang, Yin</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Fu, Xiaoqian</creatorcontrib><creatorcontrib>Chen, Dengke</creatorcontrib><creatorcontrib>Chen, Sijing</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Wei, Fei</creatorcontrib><creatorcontrib>Bei, Hongbin</creatorcontrib><creatorcontrib>Gao, Yanfei</creatorcontrib><creatorcontrib>Wen, Minru</creatorcontrib><creatorcontrib>Li, Jixue</creatorcontrib><creatorcontrib>Zhang, Ze</creatorcontrib><creatorcontrib>Zhu, Ting</creatorcontrib><creatorcontrib>Ritchie, Robert O.</creatorcontrib><creatorcontrib>Yu, Qian</creatorcontrib><title>Tuning element distribution, structure and properties by composition in high-entropy alloys</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>High-entropy alloys are a class of materials that contain five or more elements in near-equiatomic proportions 1 , 2 . Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties 3 – 8 . Rational design of such alloys hinges on an understanding of the composition–structure–property relationships in a near-infinite compositional space 9 , 10 . Here we use atomic-resolution chemical mapping to reveal the element distribution of the widely studied face-centred cubic CrMnFeCoNi Cantor alloy 2 and of a new face-centred cubic alloy, CrFeCoNiPd. In the Cantor alloy, the distribution of the five constituent elements is relatively random and uniform. By contrast, in the CrFeCoNiPd alloy, in which the palladium atoms have a markedly different atomic size and electronegativity from the other elements, the homogeneity decreases considerably; all five elements tend to show greater aggregation, with a wavelength of incipient concentration waves 11 , 12 as small as 1 to 3 nanometres. The resulting nanoscale alternating tensile and compressive strain fields lead to considerable resistance to dislocation glide. In situ transmission electron microscopy during straining experiments reveals massive dislocation cross-slip from the early stage of plastic deformation, resulting in strong dislocation interactions between multiple slip systems. These deformation mechanisms in the CrFeCoNiPd alloy, which differ markedly from those in the Cantor alloy and other face-centred cubic high-entropy alloys, are promoted by pronounced fluctuations in composition and an increase in stacking-fault energy, leading to higher yield strength without compromising strain hardening and tensile ductility. Mapping atomic-scale element distributions opens opportunities for understanding chemical structures and thus providing a basis for tuning composition and atomic configurations to obtain outstanding mechanical properties. In high-entropy alloys, atomic-resolution chemical mapping shows that swapping some of the atoms for larger, more electronegative elements results in atomic-scale modulations that produce higher yield strength, excellent strain hardening and ductility.</description><subject>639/166</subject><subject>639/301/1023/1026</subject><subject>639/301/1023/303</subject><subject>Alloys</subject><subject>Chemical composition</subject><subject>Compressive properties</subject><subject>Cross slip</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Dislocation</subject><subject>Dislocations</subject><subject>Distribution</subject><subject>Ductility</subject><subject>Electron microscopy</subject><subject>Electronegativity</subject><subject>Entropy</subject><subject>Entropy (Physics)</subject><subject>High entropy alloys</subject><subject>Humanities and Social Sciences</subject><subject>Intermetallic compounds</subject><subject>Letter</subject><subject>Mapping</subject><subject>Measurement</subject><subject>Mechanical properties</subject><subject>Metallurgical constituents</subject><subject>multidisciplinary</subject><subject>Organic chemistry</subject><subject>Palladium</subject><subject>Plastic deformation</subject><subject>Properties</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solid solutions</subject><subject>Stacking fault energy</subject><subject>Strain</subject><subject>Strain hardening</subject><subject>Structure</subject><subject>Theory</subject><subject>Transmission electron microscopy</subject><subject>Tuning</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10k-L1DAYBvAiijuufgAvUtyLolmTJk3a4zD4Z2FR0BEPHkKavu1maZNukoLz7U2Z1XVklh5S0l8eXtIny54TfE4wrd4FRsqKI0xqRDgRiDzIVoQJjhivxMNshXFRIVxRfpI9CeEaY1wSwR5nJ5SUtagFW2U_t7M1ts9hgBFszFsTojfNHI2zb_P0Pus4e8iVbfPJuwl8NBDyZpdrN04umAXmxuZXpr9CKSGZXa6Gwe3C0-xRp4YAz27X0-z7h_fbzSd0-eXjxWZ9iTRnOCLSQaNKjLXoFIgqDclL3TRtIQRhWFPdlIWuS624agTTdceqWkGbVlWVXVnR0-zVPjcNeDNDiHI0QcMwKAtuDrKgmArGasITPfuPXrvZ2zTdojgTgjNyp3o1gDS2c9ErvYTKNadCUMJLmhQ6onqw4NXgLHQmbR_4l0e8nsyN_BedH0HpaWE0-mjq64MDyUT4FXs1hyAvvn09tG_ut-vtj83nQ032WnsXgodOTt6Myu8kwXLpn9z3T6b-yaV_crm5F7f3OzcjtH9P_ClcAsUehPTJ9uDvfsD9qb8B_ybhxg</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Ding, Qingqing</creator><creator>Zhang, Yin</creator><creator>Chen, Xiao</creator><creator>Fu, Xiaoqian</creator><creator>Chen, Dengke</creator><creator>Chen, Sijing</creator><creator>Gu, Lin</creator><creator>Wei, Fei</creator><creator>Bei, Hongbin</creator><creator>Gao, Yanfei</creator><creator>Wen, Minru</creator><creator>Li, Jixue</creator><creator>Zhang, Ze</creator><creator>Zhu, Ting</creator><creator>Ritchie, Robert O.</creator><creator>Yu, Qian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201910</creationdate><title>Tuning element distribution, structure and properties by composition in high-entropy alloys</title><author>Ding, Qingqing ; Zhang, Yin ; Chen, Xiao ; Fu, Xiaoqian ; Chen, Dengke ; Chen, Sijing ; Gu, Lin ; Wei, Fei ; Bei, Hongbin ; Gao, Yanfei ; Wen, Minru ; Li, Jixue ; Zhang, Ze ; Zhu, Ting ; Ritchie, Robert O. ; Yu, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-1feba500c7fae7800565cbbd277140c3cb52c95ca6ab74c9f489aed9f4a85f583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/166</topic><topic>639/301/1023/1026</topic><topic>639/301/1023/303</topic><topic>Alloys</topic><topic>Chemical composition</topic><topic>Compressive properties</topic><topic>Cross slip</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Dislocation</topic><topic>Dislocations</topic><topic>Distribution</topic><topic>Ductility</topic><topic>Electron microscopy</topic><topic>Electronegativity</topic><topic>Entropy</topic><topic>Entropy (Physics)</topic><topic>High entropy alloys</topic><topic>Humanities and Social Sciences</topic><topic>Intermetallic compounds</topic><topic>Letter</topic><topic>Mapping</topic><topic>Measurement</topic><topic>Mechanical properties</topic><topic>Metallurgical constituents</topic><topic>multidisciplinary</topic><topic>Organic chemistry</topic><topic>Palladium</topic><topic>Plastic deformation</topic><topic>Properties</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solid solutions</topic><topic>Stacking fault energy</topic><topic>Strain</topic><topic>Strain hardening</topic><topic>Structure</topic><topic>Theory</topic><topic>Transmission electron microscopy</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Qingqing</creatorcontrib><creatorcontrib>Zhang, Yin</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Fu, Xiaoqian</creatorcontrib><creatorcontrib>Chen, Dengke</creatorcontrib><creatorcontrib>Chen, Sijing</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Wei, Fei</creatorcontrib><creatorcontrib>Bei, Hongbin</creatorcontrib><creatorcontrib>Gao, Yanfei</creatorcontrib><creatorcontrib>Wen, Minru</creatorcontrib><creatorcontrib>Li, Jixue</creatorcontrib><creatorcontrib>Zhang, Ze</creatorcontrib><creatorcontrib>Zhu, Ting</creatorcontrib><creatorcontrib>Ritchie, Robert O.</creatorcontrib><creatorcontrib>Yu, Qian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Qingqing</au><au>Zhang, Yin</au><au>Chen, Xiao</au><au>Fu, Xiaoqian</au><au>Chen, Dengke</au><au>Chen, Sijing</au><au>Gu, Lin</au><au>Wei, Fei</au><au>Bei, Hongbin</au><au>Gao, Yanfei</au><au>Wen, Minru</au><au>Li, Jixue</au><au>Zhang, Ze</au><au>Zhu, Ting</au><au>Ritchie, Robert O.</au><au>Yu, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning element distribution, structure and properties by composition in high-entropy alloys</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-10</date><risdate>2019</risdate><volume>574</volume><issue>7777</issue><spage>223</spage><epage>227</epage><pages>223-227</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>High-entropy alloys are a class of materials that contain five or more elements in near-equiatomic proportions 1 , 2 . Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties 3 – 8 . Rational design of such alloys hinges on an understanding of the composition–structure–property relationships in a near-infinite compositional space 9 , 10 . Here we use atomic-resolution chemical mapping to reveal the element distribution of the widely studied face-centred cubic CrMnFeCoNi Cantor alloy 2 and of a new face-centred cubic alloy, CrFeCoNiPd. In the Cantor alloy, the distribution of the five constituent elements is relatively random and uniform. By contrast, in the CrFeCoNiPd alloy, in which the palladium atoms have a markedly different atomic size and electronegativity from the other elements, the homogeneity decreases considerably; all five elements tend to show greater aggregation, with a wavelength of incipient concentration waves 11 , 12 as small as 1 to 3 nanometres. The resulting nanoscale alternating tensile and compressive strain fields lead to considerable resistance to dislocation glide. In situ transmission electron microscopy during straining experiments reveals massive dislocation cross-slip from the early stage of plastic deformation, resulting in strong dislocation interactions between multiple slip systems. These deformation mechanisms in the CrFeCoNiPd alloy, which differ markedly from those in the Cantor alloy and other face-centred cubic high-entropy alloys, are promoted by pronounced fluctuations in composition and an increase in stacking-fault energy, leading to higher yield strength without compromising strain hardening and tensile ductility. Mapping atomic-scale element distributions opens opportunities for understanding chemical structures and thus providing a basis for tuning composition and atomic configurations to obtain outstanding mechanical properties. In high-entropy alloys, atomic-resolution chemical mapping shows that swapping some of the atoms for larger, more electronegative elements results in atomic-scale modulations that produce higher yield strength, excellent strain hardening and ductility.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31597974</pmid><doi>10.1038/s41586-019-1617-1</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2019-10, Vol.574 (7777), p.223-227
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2303744916
source SpringerLink Journals; Nature Journals Online
subjects 639/166
639/301/1023/1026
639/301/1023/303
Alloys
Chemical composition
Compressive properties
Cross slip
Deformation
Deformation mechanisms
Dislocation
Dislocations
Distribution
Ductility
Electron microscopy
Electronegativity
Entropy
Entropy (Physics)
High entropy alloys
Humanities and Social Sciences
Intermetallic compounds
Letter
Mapping
Measurement
Mechanical properties
Metallurgical constituents
multidisciplinary
Organic chemistry
Palladium
Plastic deformation
Properties
Science
Science (multidisciplinary)
Solid solutions
Stacking fault energy
Strain
Strain hardening
Structure
Theory
Transmission electron microscopy
Tuning
title Tuning element distribution, structure and properties by composition in high-entropy alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20element%20distribution,%20structure%20and%20properties%20by%20composition%20in%20high-entropy%20alloys&rft.jtitle=Nature%20(London)&rft.au=Ding,%20Qingqing&rft.date=2019-10&rft.volume=574&rft.issue=7777&rft.spage=223&rft.epage=227&rft.pages=223-227&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1617-1&rft_dat=%3Cgale_proqu%3EA637731653%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306477641&rft_id=info:pmid/31597974&rft_galeid=A637731653&rfr_iscdi=true