Tuning element distribution, structure and properties by composition in high-entropy alloys
High-entropy alloys are a class of materials that contain five or more elements in near-equiatomic proportions 1 , 2 . Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties 3 – 8 . Rational design of such alloys hinge...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2019-10, Vol.574 (7777), p.223-227 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 227 |
---|---|
container_issue | 7777 |
container_start_page | 223 |
container_title | Nature (London) |
container_volume | 574 |
creator | Ding, Qingqing Zhang, Yin Chen, Xiao Fu, Xiaoqian Chen, Dengke Chen, Sijing Gu, Lin Wei, Fei Bei, Hongbin Gao, Yanfei Wen, Minru Li, Jixue Zhang, Ze Zhu, Ting Ritchie, Robert O. Yu, Qian |
description | High-entropy alloys are a class of materials that contain five or more elements in near-equiatomic proportions
1
,
2
. Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties
3
–
8
. Rational design of such alloys hinges on an understanding of the composition–structure–property relationships in a near-infinite compositional space
9
,
10
. Here we use atomic-resolution chemical mapping to reveal the element distribution of the widely studied face-centred cubic CrMnFeCoNi Cantor alloy
2
and of a new face-centred cubic alloy, CrFeCoNiPd. In the Cantor alloy, the distribution of the five constituent elements is relatively random and uniform. By contrast, in the CrFeCoNiPd alloy, in which the palladium atoms have a markedly different atomic size and electronegativity from the other elements, the homogeneity decreases considerably; all five elements tend to show greater aggregation, with a wavelength of incipient concentration waves
11
,
12
as small as 1 to 3 nanometres. The resulting nanoscale alternating tensile and compressive strain fields lead to considerable resistance to dislocation glide. In situ transmission electron microscopy during straining experiments reveals massive dislocation cross-slip from the early stage of plastic deformation, resulting in strong dislocation interactions between multiple slip systems. These deformation mechanisms in the CrFeCoNiPd alloy, which differ markedly from those in the Cantor alloy and other face-centred cubic high-entropy alloys, are promoted by pronounced fluctuations in composition and an increase in stacking-fault energy, leading to higher yield strength without compromising strain hardening and tensile ductility. Mapping atomic-scale element distributions opens opportunities for understanding chemical structures and thus providing a basis for tuning composition and atomic configurations to obtain outstanding mechanical properties.
In high-entropy alloys, atomic-resolution chemical mapping shows that swapping some of the atoms for larger, more electronegative elements results in atomic-scale modulations that produce higher yield strength, excellent strain hardening and ductility. |
doi_str_mv | 10.1038/s41586-019-1617-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2303744916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A637731653</galeid><sourcerecordid>A637731653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-1feba500c7fae7800565cbbd277140c3cb52c95ca6ab74c9f489aed9f4a85f583</originalsourceid><addsrcrecordid>eNp10k-L1DAYBvAiijuufgAvUtyLolmTJk3a4zD4Z2FR0BEPHkKavu1maZNukoLz7U2Z1XVklh5S0l8eXtIny54TfE4wrd4FRsqKI0xqRDgRiDzIVoQJjhivxMNshXFRIVxRfpI9CeEaY1wSwR5nJ5SUtagFW2U_t7M1ts9hgBFszFsTojfNHI2zb_P0Pus4e8iVbfPJuwl8NBDyZpdrN04umAXmxuZXpr9CKSGZXa6Gwe3C0-xRp4YAz27X0-z7h_fbzSd0-eXjxWZ9iTRnOCLSQaNKjLXoFIgqDclL3TRtIQRhWFPdlIWuS624agTTdceqWkGbVlWVXVnR0-zVPjcNeDNDiHI0QcMwKAtuDrKgmArGasITPfuPXrvZ2zTdojgTgjNyp3o1gDS2c9ErvYTKNadCUMJLmhQ6onqw4NXgLHQmbR_4l0e8nsyN_BedH0HpaWE0-mjq64MDyUT4FXs1hyAvvn09tG_ut-vtj83nQ032WnsXgodOTt6Myu8kwXLpn9z3T6b-yaV_crm5F7f3OzcjtH9P_ClcAsUehPTJ9uDvfsD9qb8B_ybhxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306477641</pqid></control><display><type>article</type><title>Tuning element distribution, structure and properties by composition in high-entropy alloys</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Ding, Qingqing ; Zhang, Yin ; Chen, Xiao ; Fu, Xiaoqian ; Chen, Dengke ; Chen, Sijing ; Gu, Lin ; Wei, Fei ; Bei, Hongbin ; Gao, Yanfei ; Wen, Minru ; Li, Jixue ; Zhang, Ze ; Zhu, Ting ; Ritchie, Robert O. ; Yu, Qian</creator><creatorcontrib>Ding, Qingqing ; Zhang, Yin ; Chen, Xiao ; Fu, Xiaoqian ; Chen, Dengke ; Chen, Sijing ; Gu, Lin ; Wei, Fei ; Bei, Hongbin ; Gao, Yanfei ; Wen, Minru ; Li, Jixue ; Zhang, Ze ; Zhu, Ting ; Ritchie, Robert O. ; Yu, Qian</creatorcontrib><description>High-entropy alloys are a class of materials that contain five or more elements in near-equiatomic proportions
1
,
2
. Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties
3
–
8
. Rational design of such alloys hinges on an understanding of the composition–structure–property relationships in a near-infinite compositional space
9
,
10
. Here we use atomic-resolution chemical mapping to reveal the element distribution of the widely studied face-centred cubic CrMnFeCoNi Cantor alloy
2
and of a new face-centred cubic alloy, CrFeCoNiPd. In the Cantor alloy, the distribution of the five constituent elements is relatively random and uniform. By contrast, in the CrFeCoNiPd alloy, in which the palladium atoms have a markedly different atomic size and electronegativity from the other elements, the homogeneity decreases considerably; all five elements tend to show greater aggregation, with a wavelength of incipient concentration waves
11
,
12
as small as 1 to 3 nanometres. The resulting nanoscale alternating tensile and compressive strain fields lead to considerable resistance to dislocation glide. In situ transmission electron microscopy during straining experiments reveals massive dislocation cross-slip from the early stage of plastic deformation, resulting in strong dislocation interactions between multiple slip systems. These deformation mechanisms in the CrFeCoNiPd alloy, which differ markedly from those in the Cantor alloy and other face-centred cubic high-entropy alloys, are promoted by pronounced fluctuations in composition and an increase in stacking-fault energy, leading to higher yield strength without compromising strain hardening and tensile ductility. Mapping atomic-scale element distributions opens opportunities for understanding chemical structures and thus providing a basis for tuning composition and atomic configurations to obtain outstanding mechanical properties.
In high-entropy alloys, atomic-resolution chemical mapping shows that swapping some of the atoms for larger, more electronegative elements results in atomic-scale modulations that produce higher yield strength, excellent strain hardening and ductility.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1617-1</identifier><identifier>PMID: 31597974</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166 ; 639/301/1023/1026 ; 639/301/1023/303 ; Alloys ; Chemical composition ; Compressive properties ; Cross slip ; Deformation ; Deformation mechanisms ; Dislocation ; Dislocations ; Distribution ; Ductility ; Electron microscopy ; Electronegativity ; Entropy ; Entropy (Physics) ; High entropy alloys ; Humanities and Social Sciences ; Intermetallic compounds ; Letter ; Mapping ; Measurement ; Mechanical properties ; Metallurgical constituents ; multidisciplinary ; Organic chemistry ; Palladium ; Plastic deformation ; Properties ; Science ; Science (multidisciplinary) ; Solid solutions ; Stacking fault energy ; Strain ; Strain hardening ; Structure ; Theory ; Transmission electron microscopy ; Tuning</subject><ispartof>Nature (London), 2019-10, Vol.574 (7777), p.223-227</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 10, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-1feba500c7fae7800565cbbd277140c3cb52c95ca6ab74c9f489aed9f4a85f583</citedby><cites>FETCH-LOGICAL-c640t-1feba500c7fae7800565cbbd277140c3cb52c95ca6ab74c9f489aed9f4a85f583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-019-1617-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-019-1617-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31597974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Qingqing</creatorcontrib><creatorcontrib>Zhang, Yin</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Fu, Xiaoqian</creatorcontrib><creatorcontrib>Chen, Dengke</creatorcontrib><creatorcontrib>Chen, Sijing</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Wei, Fei</creatorcontrib><creatorcontrib>Bei, Hongbin</creatorcontrib><creatorcontrib>Gao, Yanfei</creatorcontrib><creatorcontrib>Wen, Minru</creatorcontrib><creatorcontrib>Li, Jixue</creatorcontrib><creatorcontrib>Zhang, Ze</creatorcontrib><creatorcontrib>Zhu, Ting</creatorcontrib><creatorcontrib>Ritchie, Robert O.</creatorcontrib><creatorcontrib>Yu, Qian</creatorcontrib><title>Tuning element distribution, structure and properties by composition in high-entropy alloys</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>High-entropy alloys are a class of materials that contain five or more elements in near-equiatomic proportions
1
,
2
. Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties
3
–
8
. Rational design of such alloys hinges on an understanding of the composition–structure–property relationships in a near-infinite compositional space
9
,
10
. Here we use atomic-resolution chemical mapping to reveal the element distribution of the widely studied face-centred cubic CrMnFeCoNi Cantor alloy
2
and of a new face-centred cubic alloy, CrFeCoNiPd. In the Cantor alloy, the distribution of the five constituent elements is relatively random and uniform. By contrast, in the CrFeCoNiPd alloy, in which the palladium atoms have a markedly different atomic size and electronegativity from the other elements, the homogeneity decreases considerably; all five elements tend to show greater aggregation, with a wavelength of incipient concentration waves
11
,
12
as small as 1 to 3 nanometres. The resulting nanoscale alternating tensile and compressive strain fields lead to considerable resistance to dislocation glide. In situ transmission electron microscopy during straining experiments reveals massive dislocation cross-slip from the early stage of plastic deformation, resulting in strong dislocation interactions between multiple slip systems. These deformation mechanisms in the CrFeCoNiPd alloy, which differ markedly from those in the Cantor alloy and other face-centred cubic high-entropy alloys, are promoted by pronounced fluctuations in composition and an increase in stacking-fault energy, leading to higher yield strength without compromising strain hardening and tensile ductility. Mapping atomic-scale element distributions opens opportunities for understanding chemical structures and thus providing a basis for tuning composition and atomic configurations to obtain outstanding mechanical properties.
In high-entropy alloys, atomic-resolution chemical mapping shows that swapping some of the atoms for larger, more electronegative elements results in atomic-scale modulations that produce higher yield strength, excellent strain hardening and ductility.</description><subject>639/166</subject><subject>639/301/1023/1026</subject><subject>639/301/1023/303</subject><subject>Alloys</subject><subject>Chemical composition</subject><subject>Compressive properties</subject><subject>Cross slip</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Dislocation</subject><subject>Dislocations</subject><subject>Distribution</subject><subject>Ductility</subject><subject>Electron microscopy</subject><subject>Electronegativity</subject><subject>Entropy</subject><subject>Entropy (Physics)</subject><subject>High entropy alloys</subject><subject>Humanities and Social Sciences</subject><subject>Intermetallic compounds</subject><subject>Letter</subject><subject>Mapping</subject><subject>Measurement</subject><subject>Mechanical properties</subject><subject>Metallurgical constituents</subject><subject>multidisciplinary</subject><subject>Organic chemistry</subject><subject>Palladium</subject><subject>Plastic deformation</subject><subject>Properties</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solid solutions</subject><subject>Stacking fault energy</subject><subject>Strain</subject><subject>Strain hardening</subject><subject>Structure</subject><subject>Theory</subject><subject>Transmission electron microscopy</subject><subject>Tuning</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10k-L1DAYBvAiijuufgAvUtyLolmTJk3a4zD4Z2FR0BEPHkKavu1maZNukoLz7U2Z1XVklh5S0l8eXtIny54TfE4wrd4FRsqKI0xqRDgRiDzIVoQJjhivxMNshXFRIVxRfpI9CeEaY1wSwR5nJ5SUtagFW2U_t7M1ts9hgBFszFsTojfNHI2zb_P0Pus4e8iVbfPJuwl8NBDyZpdrN04umAXmxuZXpr9CKSGZXa6Gwe3C0-xRp4YAz27X0-z7h_fbzSd0-eXjxWZ9iTRnOCLSQaNKjLXoFIgqDclL3TRtIQRhWFPdlIWuS624agTTdceqWkGbVlWVXVnR0-zVPjcNeDNDiHI0QcMwKAtuDrKgmArGasITPfuPXrvZ2zTdojgTgjNyp3o1gDS2c9ErvYTKNadCUMJLmhQ6onqw4NXgLHQmbR_4l0e8nsyN_BedH0HpaWE0-mjq64MDyUT4FXs1hyAvvn09tG_ut-vtj83nQ032WnsXgodOTt6Myu8kwXLpn9z3T6b-yaV_crm5F7f3OzcjtH9P_ClcAsUehPTJ9uDvfsD9qb8B_ybhxg</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Ding, Qingqing</creator><creator>Zhang, Yin</creator><creator>Chen, Xiao</creator><creator>Fu, Xiaoqian</creator><creator>Chen, Dengke</creator><creator>Chen, Sijing</creator><creator>Gu, Lin</creator><creator>Wei, Fei</creator><creator>Bei, Hongbin</creator><creator>Gao, Yanfei</creator><creator>Wen, Minru</creator><creator>Li, Jixue</creator><creator>Zhang, Ze</creator><creator>Zhu, Ting</creator><creator>Ritchie, Robert O.</creator><creator>Yu, Qian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201910</creationdate><title>Tuning element distribution, structure and properties by composition in high-entropy alloys</title><author>Ding, Qingqing ; Zhang, Yin ; Chen, Xiao ; Fu, Xiaoqian ; Chen, Dengke ; Chen, Sijing ; Gu, Lin ; Wei, Fei ; Bei, Hongbin ; Gao, Yanfei ; Wen, Minru ; Li, Jixue ; Zhang, Ze ; Zhu, Ting ; Ritchie, Robert O. ; Yu, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-1feba500c7fae7800565cbbd277140c3cb52c95ca6ab74c9f489aed9f4a85f583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/166</topic><topic>639/301/1023/1026</topic><topic>639/301/1023/303</topic><topic>Alloys</topic><topic>Chemical composition</topic><topic>Compressive properties</topic><topic>Cross slip</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Dislocation</topic><topic>Dislocations</topic><topic>Distribution</topic><topic>Ductility</topic><topic>Electron microscopy</topic><topic>Electronegativity</topic><topic>Entropy</topic><topic>Entropy (Physics)</topic><topic>High entropy alloys</topic><topic>Humanities and Social Sciences</topic><topic>Intermetallic compounds</topic><topic>Letter</topic><topic>Mapping</topic><topic>Measurement</topic><topic>Mechanical properties</topic><topic>Metallurgical constituents</topic><topic>multidisciplinary</topic><topic>Organic chemistry</topic><topic>Palladium</topic><topic>Plastic deformation</topic><topic>Properties</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solid solutions</topic><topic>Stacking fault energy</topic><topic>Strain</topic><topic>Strain hardening</topic><topic>Structure</topic><topic>Theory</topic><topic>Transmission electron microscopy</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Qingqing</creatorcontrib><creatorcontrib>Zhang, Yin</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Fu, Xiaoqian</creatorcontrib><creatorcontrib>Chen, Dengke</creatorcontrib><creatorcontrib>Chen, Sijing</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Wei, Fei</creatorcontrib><creatorcontrib>Bei, Hongbin</creatorcontrib><creatorcontrib>Gao, Yanfei</creatorcontrib><creatorcontrib>Wen, Minru</creatorcontrib><creatorcontrib>Li, Jixue</creatorcontrib><creatorcontrib>Zhang, Ze</creatorcontrib><creatorcontrib>Zhu, Ting</creatorcontrib><creatorcontrib>Ritchie, Robert O.</creatorcontrib><creatorcontrib>Yu, Qian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Qingqing</au><au>Zhang, Yin</au><au>Chen, Xiao</au><au>Fu, Xiaoqian</au><au>Chen, Dengke</au><au>Chen, Sijing</au><au>Gu, Lin</au><au>Wei, Fei</au><au>Bei, Hongbin</au><au>Gao, Yanfei</au><au>Wen, Minru</au><au>Li, Jixue</au><au>Zhang, Ze</au><au>Zhu, Ting</au><au>Ritchie, Robert O.</au><au>Yu, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning element distribution, structure and properties by composition in high-entropy alloys</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-10</date><risdate>2019</risdate><volume>574</volume><issue>7777</issue><spage>223</spage><epage>227</epage><pages>223-227</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>High-entropy alloys are a class of materials that contain five or more elements in near-equiatomic proportions
1
,
2
. Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties
3
–
8
. Rational design of such alloys hinges on an understanding of the composition–structure–property relationships in a near-infinite compositional space
9
,
10
. Here we use atomic-resolution chemical mapping to reveal the element distribution of the widely studied face-centred cubic CrMnFeCoNi Cantor alloy
2
and of a new face-centred cubic alloy, CrFeCoNiPd. In the Cantor alloy, the distribution of the five constituent elements is relatively random and uniform. By contrast, in the CrFeCoNiPd alloy, in which the palladium atoms have a markedly different atomic size and electronegativity from the other elements, the homogeneity decreases considerably; all five elements tend to show greater aggregation, with a wavelength of incipient concentration waves
11
,
12
as small as 1 to 3 nanometres. The resulting nanoscale alternating tensile and compressive strain fields lead to considerable resistance to dislocation glide. In situ transmission electron microscopy during straining experiments reveals massive dislocation cross-slip from the early stage of plastic deformation, resulting in strong dislocation interactions between multiple slip systems. These deformation mechanisms in the CrFeCoNiPd alloy, which differ markedly from those in the Cantor alloy and other face-centred cubic high-entropy alloys, are promoted by pronounced fluctuations in composition and an increase in stacking-fault energy, leading to higher yield strength without compromising strain hardening and tensile ductility. Mapping atomic-scale element distributions opens opportunities for understanding chemical structures and thus providing a basis for tuning composition and atomic configurations to obtain outstanding mechanical properties.
In high-entropy alloys, atomic-resolution chemical mapping shows that swapping some of the atoms for larger, more electronegative elements results in atomic-scale modulations that produce higher yield strength, excellent strain hardening and ductility.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31597974</pmid><doi>10.1038/s41586-019-1617-1</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2019-10, Vol.574 (7777), p.223-227 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2303744916 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/166 639/301/1023/1026 639/301/1023/303 Alloys Chemical composition Compressive properties Cross slip Deformation Deformation mechanisms Dislocation Dislocations Distribution Ductility Electron microscopy Electronegativity Entropy Entropy (Physics) High entropy alloys Humanities and Social Sciences Intermetallic compounds Letter Mapping Measurement Mechanical properties Metallurgical constituents multidisciplinary Organic chemistry Palladium Plastic deformation Properties Science Science (multidisciplinary) Solid solutions Stacking fault energy Strain Strain hardening Structure Theory Transmission electron microscopy Tuning |
title | Tuning element distribution, structure and properties by composition in high-entropy alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20element%20distribution,%20structure%20and%20properties%20by%20composition%20in%20high-entropy%20alloys&rft.jtitle=Nature%20(London)&rft.au=Ding,%20Qingqing&rft.date=2019-10&rft.volume=574&rft.issue=7777&rft.spage=223&rft.epage=227&rft.pages=223-227&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1617-1&rft_dat=%3Cgale_proqu%3EA637731653%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306477641&rft_id=info:pmid/31597974&rft_galeid=A637731653&rfr_iscdi=true |