Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced

Virus-like particles (VLPs) are an ideal substitute for traditionally inactivated or attenuated viruses in vaccine production. However, given the properties of their native proteins, the thermal stability of VLPs is poor. In this study, calcium mineralization was used to fabricate foot-and-mouth dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-12, Vol.11 (47), p.22748-22761
Hauptverfasser: Du, Ping, Liu, Ronghuan, Sun, Shiqi, Dong, Hu, Zhao, Ruibo, Tang, Ruikang, Dai, Jianwu, Yin, Hong, Luo, Jianxun, Liu, Zaixin, Guo, Huichen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22761
container_issue 47
container_start_page 22748
container_title Nanoscale
container_volume 11
creator Du, Ping
Liu, Ronghuan
Sun, Shiqi
Dong, Hu
Zhao, Ruibo
Tang, Ruikang
Dai, Jianwu
Yin, Hong
Luo, Jianxun
Liu, Zaixin
Guo, Huichen
description Virus-like particles (VLPs) are an ideal substitute for traditionally inactivated or attenuated viruses in vaccine production. However, given the properties of their native proteins, the thermal stability of VLPs is poor. In this study, calcium mineralization was used to fabricate foot-and-mouth disease virus (FMDV) VLPs as immunogenic core-shell particles with improved thermal stability. The biomineralized VLPs were stably stored at 24 °C and 37 °C for 13 and 11 days, respectively. Animal experiments showed that the biomineralized VLPs induced specific protective immunogenic effects, even after storage at 37 °C for 7 days. The biomineralized VLPs also effectively activated dendritic cells (DCs) to express high levels of surface MHC-II, costimulatory molecules, and proinflammatory cytokines. The DCs activated by the mineralized VLPs rapidly localized to the secondary lymphoid tissues and promoted the activation of the native T-cell population. These results suggest that the biomineralization of VLPs is an effective approach to vaccine production insofar as the mineralized shell provides an adjuvant effect which improves the immunogenicity of the VLPs. Biomineralization can also confer superior heat resistance on VLPs, an advantage in vaccine production. The successful development of thermally stable, biomineralized VLPs will reduce our dependence on cold storage and delivery.
doi_str_mv 10.1039/c9nr05549e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2303742007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2303742007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-dabb84f231b5b5236d7447f52d09b992501e1628e5c56a93f0fce0e5a628d58e3</originalsourceid><addsrcrecordid>eNpdkc1KxDAURoMoOo5ufAApuBGhmiZNOlnqMP7AoCC6Lmlyi9E2GZN0YHwCH9uMji5cXHIJJ4cvfAgdFfi8wFRcKGE9ZqwUsIVGBJc4p7Qi2387L_fQfgivGHNBOd1Fe7RgQpCKj9DnlXG9seBlZz5kNM5mpl94t4SQxRdYj-9diLIxnYmrzLVZ61zMpdV574b4kmkTQAbIlsYPIe_MG2QL6aNRXVIk7FuTjBFUNEtI-n6wkHkIC2fTO2P1oEAfoJ1WdgEON-cYPV_Pnqa3-fzh5m56Oc8VFTTmWjbNpGwJLRrWMEK5rsqyahnRWDTpTwwXUHAyAaYYl4K2uFWAgcl0p9kE6Bid_nhTpPcBQqx7ExR0nbTghlATimlVEoyrhJ78Q1_d4G1KlyhS8ImoCE_U2Q-lvAvBQ1svvOmlX9UFrtf91FNx__jdzyzBxxvl0PSg_9DfQugXjjuN3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321689726</pqid></control><display><type>article</type><title>Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced</title><source>MEDLINE</source><source>Royal Society of Chemistry</source><creator>Du, Ping ; Liu, Ronghuan ; Sun, Shiqi ; Dong, Hu ; Zhao, Ruibo ; Tang, Ruikang ; Dai, Jianwu ; Yin, Hong ; Luo, Jianxun ; Liu, Zaixin ; Guo, Huichen</creator><creatorcontrib>Du, Ping ; Liu, Ronghuan ; Sun, Shiqi ; Dong, Hu ; Zhao, Ruibo ; Tang, Ruikang ; Dai, Jianwu ; Yin, Hong ; Luo, Jianxun ; Liu, Zaixin ; Guo, Huichen</creatorcontrib><description>Virus-like particles (VLPs) are an ideal substitute for traditionally inactivated or attenuated viruses in vaccine production. However, given the properties of their native proteins, the thermal stability of VLPs is poor. In this study, calcium mineralization was used to fabricate foot-and-mouth disease virus (FMDV) VLPs as immunogenic core-shell particles with improved thermal stability. The biomineralized VLPs were stably stored at 24 °C and 37 °C for 13 and 11 days, respectively. Animal experiments showed that the biomineralized VLPs induced specific protective immunogenic effects, even after storage at 37 °C for 7 days. The biomineralized VLPs also effectively activated dendritic cells (DCs) to express high levels of surface MHC-II, costimulatory molecules, and proinflammatory cytokines. The DCs activated by the mineralized VLPs rapidly localized to the secondary lymphoid tissues and promoted the activation of the native T-cell population. These results suggest that the biomineralization of VLPs is an effective approach to vaccine production insofar as the mineralized shell provides an adjuvant effect which improves the immunogenicity of the VLPs. Biomineralization can also confer superior heat resistance on VLPs, an advantage in vaccine production. The successful development of thermally stable, biomineralized VLPs will reduce our dependence on cold storage and delivery.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr05549e</identifier><identifier>PMID: 31599276</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adjuvants, Immunologic ; Animals ; Antibodies, Neutralizing - immunology ; Biomineralization ; Calcium - chemistry ; Capsid Proteins - immunology ; Cold storage ; Cold Temperature ; Cytokines ; Cytokines - immunology ; Dendritic Cells - cytology ; Dependence ; Endocytosis ; Foot &amp; mouth disease ; Foot-and-Mouth Disease - immunology ; Foot-and-Mouth Disease Virus - chemistry ; Guinea Pigs ; Heat resistance ; Immune system ; Lipopolysaccharides ; Lymphocyte Activation ; Mice ; Mineralization ; Specimen Handling ; T-Lymphocytes - cytology ; Temperature ; Thermal resistance ; Thermal stability ; Vaccines ; Viruses</subject><ispartof>Nanoscale, 2019-12, Vol.11 (47), p.22748-22761</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-dabb84f231b5b5236d7447f52d09b992501e1628e5c56a93f0fce0e5a628d58e3</citedby><cites>FETCH-LOGICAL-c393t-dabb84f231b5b5236d7447f52d09b992501e1628e5c56a93f0fce0e5a628d58e3</cites><orcidid>0000-0001-5926-3022 ; 0000-0002-5710-8966 ; 0000-0001-5277-7338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31599276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Ping</creatorcontrib><creatorcontrib>Liu, Ronghuan</creatorcontrib><creatorcontrib>Sun, Shiqi</creatorcontrib><creatorcontrib>Dong, Hu</creatorcontrib><creatorcontrib>Zhao, Ruibo</creatorcontrib><creatorcontrib>Tang, Ruikang</creatorcontrib><creatorcontrib>Dai, Jianwu</creatorcontrib><creatorcontrib>Yin, Hong</creatorcontrib><creatorcontrib>Luo, Jianxun</creatorcontrib><creatorcontrib>Liu, Zaixin</creatorcontrib><creatorcontrib>Guo, Huichen</creatorcontrib><title>Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Virus-like particles (VLPs) are an ideal substitute for traditionally inactivated or attenuated viruses in vaccine production. However, given the properties of their native proteins, the thermal stability of VLPs is poor. In this study, calcium mineralization was used to fabricate foot-and-mouth disease virus (FMDV) VLPs as immunogenic core-shell particles with improved thermal stability. The biomineralized VLPs were stably stored at 24 °C and 37 °C for 13 and 11 days, respectively. Animal experiments showed that the biomineralized VLPs induced specific protective immunogenic effects, even after storage at 37 °C for 7 days. The biomineralized VLPs also effectively activated dendritic cells (DCs) to express high levels of surface MHC-II, costimulatory molecules, and proinflammatory cytokines. The DCs activated by the mineralized VLPs rapidly localized to the secondary lymphoid tissues and promoted the activation of the native T-cell population. These results suggest that the biomineralization of VLPs is an effective approach to vaccine production insofar as the mineralized shell provides an adjuvant effect which improves the immunogenicity of the VLPs. Biomineralization can also confer superior heat resistance on VLPs, an advantage in vaccine production. The successful development of thermally stable, biomineralized VLPs will reduce our dependence on cold storage and delivery.</description><subject>Adjuvants, Immunologic</subject><subject>Animals</subject><subject>Antibodies, Neutralizing - immunology</subject><subject>Biomineralization</subject><subject>Calcium - chemistry</subject><subject>Capsid Proteins - immunology</subject><subject>Cold storage</subject><subject>Cold Temperature</subject><subject>Cytokines</subject><subject>Cytokines - immunology</subject><subject>Dendritic Cells - cytology</subject><subject>Dependence</subject><subject>Endocytosis</subject><subject>Foot &amp; mouth disease</subject><subject>Foot-and-Mouth Disease - immunology</subject><subject>Foot-and-Mouth Disease Virus - chemistry</subject><subject>Guinea Pigs</subject><subject>Heat resistance</subject><subject>Immune system</subject><subject>Lipopolysaccharides</subject><subject>Lymphocyte Activation</subject><subject>Mice</subject><subject>Mineralization</subject><subject>Specimen Handling</subject><subject>T-Lymphocytes - cytology</subject><subject>Temperature</subject><subject>Thermal resistance</subject><subject>Thermal stability</subject><subject>Vaccines</subject><subject>Viruses</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1KxDAURoMoOo5ufAApuBGhmiZNOlnqMP7AoCC6Lmlyi9E2GZN0YHwCH9uMji5cXHIJJ4cvfAgdFfi8wFRcKGE9ZqwUsIVGBJc4p7Qi2387L_fQfgivGHNBOd1Fe7RgQpCKj9DnlXG9seBlZz5kNM5mpl94t4SQxRdYj-9diLIxnYmrzLVZ61zMpdV574b4kmkTQAbIlsYPIe_MG2QL6aNRXVIk7FuTjBFUNEtI-n6wkHkIC2fTO2P1oEAfoJ1WdgEON-cYPV_Pnqa3-fzh5m56Oc8VFTTmWjbNpGwJLRrWMEK5rsqyahnRWDTpTwwXUHAyAaYYl4K2uFWAgcl0p9kE6Bid_nhTpPcBQqx7ExR0nbTghlATimlVEoyrhJ78Q1_d4G1KlyhS8ImoCE_U2Q-lvAvBQ1svvOmlX9UFrtf91FNx__jdzyzBxxvl0PSg_9DfQugXjjuN3Q</recordid><startdate>20191221</startdate><enddate>20191221</enddate><creator>Du, Ping</creator><creator>Liu, Ronghuan</creator><creator>Sun, Shiqi</creator><creator>Dong, Hu</creator><creator>Zhao, Ruibo</creator><creator>Tang, Ruikang</creator><creator>Dai, Jianwu</creator><creator>Yin, Hong</creator><creator>Luo, Jianxun</creator><creator>Liu, Zaixin</creator><creator>Guo, Huichen</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5926-3022</orcidid><orcidid>https://orcid.org/0000-0002-5710-8966</orcidid><orcidid>https://orcid.org/0000-0001-5277-7338</orcidid></search><sort><creationdate>20191221</creationdate><title>Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced</title><author>Du, Ping ; Liu, Ronghuan ; Sun, Shiqi ; Dong, Hu ; Zhao, Ruibo ; Tang, Ruikang ; Dai, Jianwu ; Yin, Hong ; Luo, Jianxun ; Liu, Zaixin ; Guo, Huichen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-dabb84f231b5b5236d7447f52d09b992501e1628e5c56a93f0fce0e5a628d58e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adjuvants, Immunologic</topic><topic>Animals</topic><topic>Antibodies, Neutralizing - immunology</topic><topic>Biomineralization</topic><topic>Calcium - chemistry</topic><topic>Capsid Proteins - immunology</topic><topic>Cold storage</topic><topic>Cold Temperature</topic><topic>Cytokines</topic><topic>Cytokines - immunology</topic><topic>Dendritic Cells - cytology</topic><topic>Dependence</topic><topic>Endocytosis</topic><topic>Foot &amp; mouth disease</topic><topic>Foot-and-Mouth Disease - immunology</topic><topic>Foot-and-Mouth Disease Virus - chemistry</topic><topic>Guinea Pigs</topic><topic>Heat resistance</topic><topic>Immune system</topic><topic>Lipopolysaccharides</topic><topic>Lymphocyte Activation</topic><topic>Mice</topic><topic>Mineralization</topic><topic>Specimen Handling</topic><topic>T-Lymphocytes - cytology</topic><topic>Temperature</topic><topic>Thermal resistance</topic><topic>Thermal stability</topic><topic>Vaccines</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Ping</creatorcontrib><creatorcontrib>Liu, Ronghuan</creatorcontrib><creatorcontrib>Sun, Shiqi</creatorcontrib><creatorcontrib>Dong, Hu</creatorcontrib><creatorcontrib>Zhao, Ruibo</creatorcontrib><creatorcontrib>Tang, Ruikang</creatorcontrib><creatorcontrib>Dai, Jianwu</creatorcontrib><creatorcontrib>Yin, Hong</creatorcontrib><creatorcontrib>Luo, Jianxun</creatorcontrib><creatorcontrib>Liu, Zaixin</creatorcontrib><creatorcontrib>Guo, Huichen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Ping</au><au>Liu, Ronghuan</au><au>Sun, Shiqi</au><au>Dong, Hu</au><au>Zhao, Ruibo</au><au>Tang, Ruikang</au><au>Dai, Jianwu</au><au>Yin, Hong</au><au>Luo, Jianxun</au><au>Liu, Zaixin</au><au>Guo, Huichen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-12-21</date><risdate>2019</risdate><volume>11</volume><issue>47</issue><spage>22748</spage><epage>22761</epage><pages>22748-22761</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Virus-like particles (VLPs) are an ideal substitute for traditionally inactivated or attenuated viruses in vaccine production. However, given the properties of their native proteins, the thermal stability of VLPs is poor. In this study, calcium mineralization was used to fabricate foot-and-mouth disease virus (FMDV) VLPs as immunogenic core-shell particles with improved thermal stability. The biomineralized VLPs were stably stored at 24 °C and 37 °C for 13 and 11 days, respectively. Animal experiments showed that the biomineralized VLPs induced specific protective immunogenic effects, even after storage at 37 °C for 7 days. The biomineralized VLPs also effectively activated dendritic cells (DCs) to express high levels of surface MHC-II, costimulatory molecules, and proinflammatory cytokines. The DCs activated by the mineralized VLPs rapidly localized to the secondary lymphoid tissues and promoted the activation of the native T-cell population. These results suggest that the biomineralization of VLPs is an effective approach to vaccine production insofar as the mineralized shell provides an adjuvant effect which improves the immunogenicity of the VLPs. Biomineralization can also confer superior heat resistance on VLPs, an advantage in vaccine production. The successful development of thermally stable, biomineralized VLPs will reduce our dependence on cold storage and delivery.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31599276</pmid><doi>10.1039/c9nr05549e</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5926-3022</orcidid><orcidid>https://orcid.org/0000-0002-5710-8966</orcidid><orcidid>https://orcid.org/0000-0001-5277-7338</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2019-12, Vol.11 (47), p.22748-22761
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2303742007
source MEDLINE; Royal Society of Chemistry
subjects Adjuvants, Immunologic
Animals
Antibodies, Neutralizing - immunology
Biomineralization
Calcium - chemistry
Capsid Proteins - immunology
Cold storage
Cold Temperature
Cytokines
Cytokines - immunology
Dendritic Cells - cytology
Dependence
Endocytosis
Foot & mouth disease
Foot-and-Mouth Disease - immunology
Foot-and-Mouth Disease Virus - chemistry
Guinea Pigs
Heat resistance
Immune system
Lipopolysaccharides
Lymphocyte Activation
Mice
Mineralization
Specimen Handling
T-Lymphocytes - cytology
Temperature
Thermal resistance
Thermal stability
Vaccines
Viruses
title Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomineralization%20improves%20the%20thermostability%20of%20foot-and-mouth%20disease%20virus-like%20particles%20and%20the%20protective%20immune%20response%20induced&rft.jtitle=Nanoscale&rft.au=Du,%20Ping&rft.date=2019-12-21&rft.volume=11&rft.issue=47&rft.spage=22748&rft.epage=22761&rft.pages=22748-22761&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr05549e&rft_dat=%3Cproquest_cross%3E2303742007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321689726&rft_id=info:pmid/31599276&rfr_iscdi=true