ICU staffing feature phenotypes and their relationship with patients’ outcomes: an unsupervised machine learning analysis

Purpose To study whether ICU staffing features are associated with improved hospital mortality, ICU length of stay (LOS) and duration of mechanical ventilation (MV) using cluster analysis directed by machine learning. Methods The following variables were included in the analysis: average bed to nurs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intensive care medicine 2019-11, Vol.45 (11), p.1599-1607
Hauptverfasser: Zampieri, Fernando G., Salluh, Jorge I. F., Azevedo, Luciano C. P., Kahn, Jeremy M., Damiani, Lucas P., Borges, Lunna P., Viana, William N., Costa, Roberto, Corrêa, Thiago D., Araya, Dieter E. S., Maia, Marcelo O., Ferez, Marcus A., Carvalho, Alexandre G. R., Knibel, Marcos F., Melo, Ulisses O., Santino, Marcelo S., Lisboa, Thiago, Caser, Eliana B., Besen, Bruno A. M. P., Bozza, Fernando A., Angus, Derek C., Soares, Marcio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1607
container_issue 11
container_start_page 1599
container_title Intensive care medicine
container_volume 45
creator Zampieri, Fernando G.
Salluh, Jorge I. F.
Azevedo, Luciano C. P.
Kahn, Jeremy M.
Damiani, Lucas P.
Borges, Lunna P.
Viana, William N.
Costa, Roberto
Corrêa, Thiago D.
Araya, Dieter E. S.
Maia, Marcelo O.
Ferez, Marcus A.
Carvalho, Alexandre G. R.
Knibel, Marcos F.
Melo, Ulisses O.
Santino, Marcelo S.
Lisboa, Thiago
Caser, Eliana B.
Besen, Bruno A. M. P.
Bozza, Fernando A.
Angus, Derek C.
Soares, Marcio
description Purpose To study whether ICU staffing features are associated with improved hospital mortality, ICU length of stay (LOS) and duration of mechanical ventilation (MV) using cluster analysis directed by machine learning. Methods The following variables were included in the analysis: average bed to nurse, physiotherapist and physician ratios, presence of 24/7 board-certified intensivists and dedicated pharmacists in the ICU, and nurse and physiotherapist autonomy scores. Clusters were defined using the partition around medoids method. We assessed the association between clusters and hospital mortality using logistic regression and with ICU LOS and MV duration using competing risk regression. Results Analysis included data from 129,680 patients admitted to 93 ICUs (2014–2015). Three clusters were identified. The features distinguishing between the clusters were: the presence of board-certified intensivists in the ICU 24/7 (present in Cluster 3), dedicated pharmacists (present in Clusters 2 and 3) and the extent of nurse autonomy (which increased from Clusters 1 to 3). The patients in Cluster 3 exhibited the best outcomes, with lower adjusted hospital mortality [odds ratio 0.92 (95% confidence interval (CI), 0.87–0.98)], shorter ICU LOS [subhazard ratio (SHR) for patients surviving to ICU discharge 1.24 (95% CI 1.22–1.26)] and shorter durations of MV [SHR for undergoing extubation 1.61(95% CI 1.54–1.69)]. Cluster 1 had the worst outcomes. Conclusion Patients treated in ICUs combining 24/7 expert intensivist coverage, a dedicated pharmacist and nurses with greater autonomy had the best outcomes. All of these features represent achievable targets that should be considered by policy makers with an interest in promoting equal and optimal ICU care.
doi_str_mv 10.1007/s00134-019-05790-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2303201881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724266028</galeid><sourcerecordid>A724266028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-49b439ddf4e212fcf09940af9debb5f519a4a136295c41d21c393ad5c34790f03</originalsourceid><addsrcrecordid>eNp9ksuKFDEUhoMoTjv6Ai4k4MZNjbnVJe6GxsvAgBtnHdKpk64MVUmZpJQeN76Gr-eTmJ4eHZRGsghJvv_POYcfoeeUnFFC2teJEMpFRaisSN1KUt08QCsqOKso491DtCJcsEo0gp2gJyldF7xtavoYnXBay5oLuULfLtZXOGVtrfNbbEHnJQKeB_Ah72ZIWPse5wFcxBFGnV3waXAz_urygOdyBp_Tz-8_cFiyCROkN0WBF5-WGeIXl6DHkzaD84BH0NHvf9Fej7vk0lP0yOoxwbO7_RRdvXv7af2huvz4_mJ9flmZmolcCbkRXPa9FcAos8YSKQXRVvaw2dS2plILTXnDZG0E7Rk1XHLd14aLMhRL-Cl6dfCdY_i8QMpqcsnAOGoPYUmKccIZoV1HC_ryH_Q6LLHUe0u1spAdu6e2egTlvA05arM3VectE6xpCOsKVR2htuAh6jF4sK5c_8WfHeHL6mFy5qiAHQQmhpQiWDVHN-m4U5SofULUISGqJETdJkTdFNGLuw6XzQT9H8nvSBSAH4BUnvwW4v0I_mP7C-6cx6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307930382</pqid></control><display><type>article</type><title>ICU staffing feature phenotypes and their relationship with patients’ outcomes: an unsupervised machine learning analysis</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Zampieri, Fernando G. ; Salluh, Jorge I. F. ; Azevedo, Luciano C. P. ; Kahn, Jeremy M. ; Damiani, Lucas P. ; Borges, Lunna P. ; Viana, William N. ; Costa, Roberto ; Corrêa, Thiago D. ; Araya, Dieter E. S. ; Maia, Marcelo O. ; Ferez, Marcus A. ; Carvalho, Alexandre G. R. ; Knibel, Marcos F. ; Melo, Ulisses O. ; Santino, Marcelo S. ; Lisboa, Thiago ; Caser, Eliana B. ; Besen, Bruno A. M. P. ; Bozza, Fernando A. ; Angus, Derek C. ; Soares, Marcio</creator><creatorcontrib>Zampieri, Fernando G. ; Salluh, Jorge I. F. ; Azevedo, Luciano C. P. ; Kahn, Jeremy M. ; Damiani, Lucas P. ; Borges, Lunna P. ; Viana, William N. ; Costa, Roberto ; Corrêa, Thiago D. ; Araya, Dieter E. S. ; Maia, Marcelo O. ; Ferez, Marcus A. ; Carvalho, Alexandre G. R. ; Knibel, Marcos F. ; Melo, Ulisses O. ; Santino, Marcelo S. ; Lisboa, Thiago ; Caser, Eliana B. ; Besen, Bruno A. M. P. ; Bozza, Fernando A. ; Angus, Derek C. ; Soares, Marcio ; ORCHESTRA Study Investigators ; the ORCHESTRA Study Investigators</creatorcontrib><description>Purpose To study whether ICU staffing features are associated with improved hospital mortality, ICU length of stay (LOS) and duration of mechanical ventilation (MV) using cluster analysis directed by machine learning. Methods The following variables were included in the analysis: average bed to nurse, physiotherapist and physician ratios, presence of 24/7 board-certified intensivists and dedicated pharmacists in the ICU, and nurse and physiotherapist autonomy scores. Clusters were defined using the partition around medoids method. We assessed the association between clusters and hospital mortality using logistic regression and with ICU LOS and MV duration using competing risk regression. Results Analysis included data from 129,680 patients admitted to 93 ICUs (2014–2015). Three clusters were identified. The features distinguishing between the clusters were: the presence of board-certified intensivists in the ICU 24/7 (present in Cluster 3), dedicated pharmacists (present in Clusters 2 and 3) and the extent of nurse autonomy (which increased from Clusters 1 to 3). The patients in Cluster 3 exhibited the best outcomes, with lower adjusted hospital mortality [odds ratio 0.92 (95% confidence interval (CI), 0.87–0.98)], shorter ICU LOS [subhazard ratio (SHR) for patients surviving to ICU discharge 1.24 (95% CI 1.22–1.26)] and shorter durations of MV [SHR for undergoing extubation 1.61(95% CI 1.54–1.69)]. Cluster 1 had the worst outcomes. Conclusion Patients treated in ICUs combining 24/7 expert intensivist coverage, a dedicated pharmacist and nurses with greater autonomy had the best outcomes. All of these features represent achievable targets that should be considered by policy makers with an interest in promoting equal and optimal ICU care.</description><identifier>ISSN: 0342-4642</identifier><identifier>EISSN: 1432-1238</identifier><identifier>DOI: 10.1007/s00134-019-05790-z</identifier><identifier>PMID: 31595349</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject><![CDATA[Analysis ; Anesthesiology ; Artificial intelligence ; Autonomy ; Brazil ; Cluster Analysis ; Confidence intervals ; Critical Care Medicine ; Emergency Medicine ; Extubation ; Hospital Bed Capacity - statistics & numerical data ; Hospital Mortality - trends ; Humans ; Intensive ; Intensive care ; Intensive Care Units - organization & administration ; Intensive Care Units - statistics & numerical data ; Learning algorithms ; Length of Stay - statistics & numerical data ; Length of Stay - trends ; Logistic Models ; Machine learning ; Mechanical ventilation ; Medical colleges ; Medical personnel ; Medicine ; Medicine & Public Health ; Mortality ; Nurses ; Nurses - statistics & numerical data ; Nurses - supply & distribution ; Odds Ratio ; Organ Dysfunction Scores ; Original ; Pain Medicine ; Patients ; Pediatrics ; Personnel Staffing and Scheduling - classification ; Personnel Staffing and Scheduling - standards ; Personnel Staffing and Scheduling - statistics & numerical data ; Pharmacists ; Phenotypes ; Physical Therapists - statistics & numerical data ; Physical Therapists - supply & distribution ; Physicians - statistics & numerical data ; Physicians - supply & distribution ; Pneumology/Respiratory System ; Regression analysis ; Retrospective Studies ; Risk analysis ; Statistical analysis ; Time Factors ; Unsupervised learning ; Unsupervised Machine Learning - trends ; Ventilation ; Workforce planning]]></subject><ispartof>Intensive care medicine, 2019-11, Vol.45 (11), p.1599-1607</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Intensive Care Medicine is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-49b439ddf4e212fcf09940af9debb5f519a4a136295c41d21c393ad5c34790f03</citedby><cites>FETCH-LOGICAL-c524t-49b439ddf4e212fcf09940af9debb5f519a4a136295c41d21c393ad5c34790f03</cites><orcidid>0000-0001-9315-6386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00134-019-05790-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00134-019-05790-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31595349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zampieri, Fernando G.</creatorcontrib><creatorcontrib>Salluh, Jorge I. F.</creatorcontrib><creatorcontrib>Azevedo, Luciano C. P.</creatorcontrib><creatorcontrib>Kahn, Jeremy M.</creatorcontrib><creatorcontrib>Damiani, Lucas P.</creatorcontrib><creatorcontrib>Borges, Lunna P.</creatorcontrib><creatorcontrib>Viana, William N.</creatorcontrib><creatorcontrib>Costa, Roberto</creatorcontrib><creatorcontrib>Corrêa, Thiago D.</creatorcontrib><creatorcontrib>Araya, Dieter E. S.</creatorcontrib><creatorcontrib>Maia, Marcelo O.</creatorcontrib><creatorcontrib>Ferez, Marcus A.</creatorcontrib><creatorcontrib>Carvalho, Alexandre G. R.</creatorcontrib><creatorcontrib>Knibel, Marcos F.</creatorcontrib><creatorcontrib>Melo, Ulisses O.</creatorcontrib><creatorcontrib>Santino, Marcelo S.</creatorcontrib><creatorcontrib>Lisboa, Thiago</creatorcontrib><creatorcontrib>Caser, Eliana B.</creatorcontrib><creatorcontrib>Besen, Bruno A. M. P.</creatorcontrib><creatorcontrib>Bozza, Fernando A.</creatorcontrib><creatorcontrib>Angus, Derek C.</creatorcontrib><creatorcontrib>Soares, Marcio</creatorcontrib><creatorcontrib>ORCHESTRA Study Investigators</creatorcontrib><creatorcontrib>the ORCHESTRA Study Investigators</creatorcontrib><title>ICU staffing feature phenotypes and their relationship with patients’ outcomes: an unsupervised machine learning analysis</title><title>Intensive care medicine</title><addtitle>Intensive Care Med</addtitle><addtitle>Intensive Care Med</addtitle><description>Purpose To study whether ICU staffing features are associated with improved hospital mortality, ICU length of stay (LOS) and duration of mechanical ventilation (MV) using cluster analysis directed by machine learning. Methods The following variables were included in the analysis: average bed to nurse, physiotherapist and physician ratios, presence of 24/7 board-certified intensivists and dedicated pharmacists in the ICU, and nurse and physiotherapist autonomy scores. Clusters were defined using the partition around medoids method. We assessed the association between clusters and hospital mortality using logistic regression and with ICU LOS and MV duration using competing risk regression. Results Analysis included data from 129,680 patients admitted to 93 ICUs (2014–2015). Three clusters were identified. The features distinguishing between the clusters were: the presence of board-certified intensivists in the ICU 24/7 (present in Cluster 3), dedicated pharmacists (present in Clusters 2 and 3) and the extent of nurse autonomy (which increased from Clusters 1 to 3). The patients in Cluster 3 exhibited the best outcomes, with lower adjusted hospital mortality [odds ratio 0.92 (95% confidence interval (CI), 0.87–0.98)], shorter ICU LOS [subhazard ratio (SHR) for patients surviving to ICU discharge 1.24 (95% CI 1.22–1.26)] and shorter durations of MV [SHR for undergoing extubation 1.61(95% CI 1.54–1.69)]. Cluster 1 had the worst outcomes. Conclusion Patients treated in ICUs combining 24/7 expert intensivist coverage, a dedicated pharmacist and nurses with greater autonomy had the best outcomes. All of these features represent achievable targets that should be considered by policy makers with an interest in promoting equal and optimal ICU care.</description><subject>Analysis</subject><subject>Anesthesiology</subject><subject>Artificial intelligence</subject><subject>Autonomy</subject><subject>Brazil</subject><subject>Cluster Analysis</subject><subject>Confidence intervals</subject><subject>Critical Care Medicine</subject><subject>Emergency Medicine</subject><subject>Extubation</subject><subject>Hospital Bed Capacity - statistics &amp; numerical data</subject><subject>Hospital Mortality - trends</subject><subject>Humans</subject><subject>Intensive</subject><subject>Intensive care</subject><subject>Intensive Care Units - organization &amp; administration</subject><subject>Intensive Care Units - statistics &amp; numerical data</subject><subject>Learning algorithms</subject><subject>Length of Stay - statistics &amp; numerical data</subject><subject>Length of Stay - trends</subject><subject>Logistic Models</subject><subject>Machine learning</subject><subject>Mechanical ventilation</subject><subject>Medical colleges</subject><subject>Medical personnel</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mortality</subject><subject>Nurses</subject><subject>Nurses - statistics &amp; numerical data</subject><subject>Nurses - supply &amp; distribution</subject><subject>Odds Ratio</subject><subject>Organ Dysfunction Scores</subject><subject>Original</subject><subject>Pain Medicine</subject><subject>Patients</subject><subject>Pediatrics</subject><subject>Personnel Staffing and Scheduling - classification</subject><subject>Personnel Staffing and Scheduling - standards</subject><subject>Personnel Staffing and Scheduling - statistics &amp; numerical data</subject><subject>Pharmacists</subject><subject>Phenotypes</subject><subject>Physical Therapists - statistics &amp; numerical data</subject><subject>Physical Therapists - supply &amp; distribution</subject><subject>Physicians - statistics &amp; numerical data</subject><subject>Physicians - supply &amp; distribution</subject><subject>Pneumology/Respiratory System</subject><subject>Regression analysis</subject><subject>Retrospective Studies</subject><subject>Risk analysis</subject><subject>Statistical analysis</subject><subject>Time Factors</subject><subject>Unsupervised learning</subject><subject>Unsupervised Machine Learning - trends</subject><subject>Ventilation</subject><subject>Workforce planning</subject><issn>0342-4642</issn><issn>1432-1238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9ksuKFDEUhoMoTjv6Ai4k4MZNjbnVJe6GxsvAgBtnHdKpk64MVUmZpJQeN76Gr-eTmJ4eHZRGsghJvv_POYcfoeeUnFFC2teJEMpFRaisSN1KUt08QCsqOKso491DtCJcsEo0gp2gJyldF7xtavoYnXBay5oLuULfLtZXOGVtrfNbbEHnJQKeB_Ah72ZIWPse5wFcxBFGnV3waXAz_urygOdyBp_Tz-8_cFiyCROkN0WBF5-WGeIXl6DHkzaD84BH0NHvf9Fej7vk0lP0yOoxwbO7_RRdvXv7af2huvz4_mJ9flmZmolcCbkRXPa9FcAos8YSKQXRVvaw2dS2plILTXnDZG0E7Rk1XHLd14aLMhRL-Cl6dfCdY_i8QMpqcsnAOGoPYUmKccIZoV1HC_ryH_Q6LLHUe0u1spAdu6e2egTlvA05arM3VectE6xpCOsKVR2htuAh6jF4sK5c_8WfHeHL6mFy5qiAHQQmhpQiWDVHN-m4U5SofULUISGqJETdJkTdFNGLuw6XzQT9H8nvSBSAH4BUnvwW4v0I_mP7C-6cx6M</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zampieri, Fernando G.</creator><creator>Salluh, Jorge I. F.</creator><creator>Azevedo, Luciano C. P.</creator><creator>Kahn, Jeremy M.</creator><creator>Damiani, Lucas P.</creator><creator>Borges, Lunna P.</creator><creator>Viana, William N.</creator><creator>Costa, Roberto</creator><creator>Corrêa, Thiago D.</creator><creator>Araya, Dieter E. S.</creator><creator>Maia, Marcelo O.</creator><creator>Ferez, Marcus A.</creator><creator>Carvalho, Alexandre G. R.</creator><creator>Knibel, Marcos F.</creator><creator>Melo, Ulisses O.</creator><creator>Santino, Marcelo S.</creator><creator>Lisboa, Thiago</creator><creator>Caser, Eliana B.</creator><creator>Besen, Bruno A. M. P.</creator><creator>Bozza, Fernando A.</creator><creator>Angus, Derek C.</creator><creator>Soares, Marcio</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9315-6386</orcidid></search><sort><creationdate>20191101</creationdate><title>ICU staffing feature phenotypes and their relationship with patients’ outcomes: an unsupervised machine learning analysis</title><author>Zampieri, Fernando G. ; Salluh, Jorge I. F. ; Azevedo, Luciano C. P. ; Kahn, Jeremy M. ; Damiani, Lucas P. ; Borges, Lunna P. ; Viana, William N. ; Costa, Roberto ; Corrêa, Thiago D. ; Araya, Dieter E. S. ; Maia, Marcelo O. ; Ferez, Marcus A. ; Carvalho, Alexandre G. R. ; Knibel, Marcos F. ; Melo, Ulisses O. ; Santino, Marcelo S. ; Lisboa, Thiago ; Caser, Eliana B. ; Besen, Bruno A. M. P. ; Bozza, Fernando A. ; Angus, Derek C. ; Soares, Marcio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-49b439ddf4e212fcf09940af9debb5f519a4a136295c41d21c393ad5c34790f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Anesthesiology</topic><topic>Artificial intelligence</topic><topic>Autonomy</topic><topic>Brazil</topic><topic>Cluster Analysis</topic><topic>Confidence intervals</topic><topic>Critical Care Medicine</topic><topic>Emergency Medicine</topic><topic>Extubation</topic><topic>Hospital Bed Capacity - statistics &amp; numerical data</topic><topic>Hospital Mortality - trends</topic><topic>Humans</topic><topic>Intensive</topic><topic>Intensive care</topic><topic>Intensive Care Units - organization &amp; administration</topic><topic>Intensive Care Units - statistics &amp; numerical data</topic><topic>Learning algorithms</topic><topic>Length of Stay - statistics &amp; numerical data</topic><topic>Length of Stay - trends</topic><topic>Logistic Models</topic><topic>Machine learning</topic><topic>Mechanical ventilation</topic><topic>Medical colleges</topic><topic>Medical personnel</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mortality</topic><topic>Nurses</topic><topic>Nurses - statistics &amp; numerical data</topic><topic>Nurses - supply &amp; distribution</topic><topic>Odds Ratio</topic><topic>Organ Dysfunction Scores</topic><topic>Original</topic><topic>Pain Medicine</topic><topic>Patients</topic><topic>Pediatrics</topic><topic>Personnel Staffing and Scheduling - classification</topic><topic>Personnel Staffing and Scheduling - standards</topic><topic>Personnel Staffing and Scheduling - statistics &amp; numerical data</topic><topic>Pharmacists</topic><topic>Phenotypes</topic><topic>Physical Therapists - statistics &amp; numerical data</topic><topic>Physical Therapists - supply &amp; distribution</topic><topic>Physicians - statistics &amp; numerical data</topic><topic>Physicians - supply &amp; distribution</topic><topic>Pneumology/Respiratory System</topic><topic>Regression analysis</topic><topic>Retrospective Studies</topic><topic>Risk analysis</topic><topic>Statistical analysis</topic><topic>Time Factors</topic><topic>Unsupervised learning</topic><topic>Unsupervised Machine Learning - trends</topic><topic>Ventilation</topic><topic>Workforce planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zampieri, Fernando G.</creatorcontrib><creatorcontrib>Salluh, Jorge I. F.</creatorcontrib><creatorcontrib>Azevedo, Luciano C. P.</creatorcontrib><creatorcontrib>Kahn, Jeremy M.</creatorcontrib><creatorcontrib>Damiani, Lucas P.</creatorcontrib><creatorcontrib>Borges, Lunna P.</creatorcontrib><creatorcontrib>Viana, William N.</creatorcontrib><creatorcontrib>Costa, Roberto</creatorcontrib><creatorcontrib>Corrêa, Thiago D.</creatorcontrib><creatorcontrib>Araya, Dieter E. S.</creatorcontrib><creatorcontrib>Maia, Marcelo O.</creatorcontrib><creatorcontrib>Ferez, Marcus A.</creatorcontrib><creatorcontrib>Carvalho, Alexandre G. R.</creatorcontrib><creatorcontrib>Knibel, Marcos F.</creatorcontrib><creatorcontrib>Melo, Ulisses O.</creatorcontrib><creatorcontrib>Santino, Marcelo S.</creatorcontrib><creatorcontrib>Lisboa, Thiago</creatorcontrib><creatorcontrib>Caser, Eliana B.</creatorcontrib><creatorcontrib>Besen, Bruno A. M. P.</creatorcontrib><creatorcontrib>Bozza, Fernando A.</creatorcontrib><creatorcontrib>Angus, Derek C.</creatorcontrib><creatorcontrib>Soares, Marcio</creatorcontrib><creatorcontrib>ORCHESTRA Study Investigators</creatorcontrib><creatorcontrib>the ORCHESTRA Study Investigators</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Intensive care medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zampieri, Fernando G.</au><au>Salluh, Jorge I. F.</au><au>Azevedo, Luciano C. P.</au><au>Kahn, Jeremy M.</au><au>Damiani, Lucas P.</au><au>Borges, Lunna P.</au><au>Viana, William N.</au><au>Costa, Roberto</au><au>Corrêa, Thiago D.</au><au>Araya, Dieter E. S.</au><au>Maia, Marcelo O.</au><au>Ferez, Marcus A.</au><au>Carvalho, Alexandre G. R.</au><au>Knibel, Marcos F.</au><au>Melo, Ulisses O.</au><au>Santino, Marcelo S.</au><au>Lisboa, Thiago</au><au>Caser, Eliana B.</au><au>Besen, Bruno A. M. P.</au><au>Bozza, Fernando A.</au><au>Angus, Derek C.</au><au>Soares, Marcio</au><aucorp>ORCHESTRA Study Investigators</aucorp><aucorp>the ORCHESTRA Study Investigators</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ICU staffing feature phenotypes and their relationship with patients’ outcomes: an unsupervised machine learning analysis</atitle><jtitle>Intensive care medicine</jtitle><stitle>Intensive Care Med</stitle><addtitle>Intensive Care Med</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>45</volume><issue>11</issue><spage>1599</spage><epage>1607</epage><pages>1599-1607</pages><issn>0342-4642</issn><eissn>1432-1238</eissn><abstract>Purpose To study whether ICU staffing features are associated with improved hospital mortality, ICU length of stay (LOS) and duration of mechanical ventilation (MV) using cluster analysis directed by machine learning. Methods The following variables were included in the analysis: average bed to nurse, physiotherapist and physician ratios, presence of 24/7 board-certified intensivists and dedicated pharmacists in the ICU, and nurse and physiotherapist autonomy scores. Clusters were defined using the partition around medoids method. We assessed the association between clusters and hospital mortality using logistic regression and with ICU LOS and MV duration using competing risk regression. Results Analysis included data from 129,680 patients admitted to 93 ICUs (2014–2015). Three clusters were identified. The features distinguishing between the clusters were: the presence of board-certified intensivists in the ICU 24/7 (present in Cluster 3), dedicated pharmacists (present in Clusters 2 and 3) and the extent of nurse autonomy (which increased from Clusters 1 to 3). The patients in Cluster 3 exhibited the best outcomes, with lower adjusted hospital mortality [odds ratio 0.92 (95% confidence interval (CI), 0.87–0.98)], shorter ICU LOS [subhazard ratio (SHR) for patients surviving to ICU discharge 1.24 (95% CI 1.22–1.26)] and shorter durations of MV [SHR for undergoing extubation 1.61(95% CI 1.54–1.69)]. Cluster 1 had the worst outcomes. Conclusion Patients treated in ICUs combining 24/7 expert intensivist coverage, a dedicated pharmacist and nurses with greater autonomy had the best outcomes. All of these features represent achievable targets that should be considered by policy makers with an interest in promoting equal and optimal ICU care.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31595349</pmid><doi>10.1007/s00134-019-05790-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9315-6386</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0342-4642
ispartof Intensive care medicine, 2019-11, Vol.45 (11), p.1599-1607
issn 0342-4642
1432-1238
language eng
recordid cdi_proquest_miscellaneous_2303201881
source MEDLINE; SpringerNature Journals
subjects Analysis
Anesthesiology
Artificial intelligence
Autonomy
Brazil
Cluster Analysis
Confidence intervals
Critical Care Medicine
Emergency Medicine
Extubation
Hospital Bed Capacity - statistics & numerical data
Hospital Mortality - trends
Humans
Intensive
Intensive care
Intensive Care Units - organization & administration
Intensive Care Units - statistics & numerical data
Learning algorithms
Length of Stay - statistics & numerical data
Length of Stay - trends
Logistic Models
Machine learning
Mechanical ventilation
Medical colleges
Medical personnel
Medicine
Medicine & Public Health
Mortality
Nurses
Nurses - statistics & numerical data
Nurses - supply & distribution
Odds Ratio
Organ Dysfunction Scores
Original
Pain Medicine
Patients
Pediatrics
Personnel Staffing and Scheduling - classification
Personnel Staffing and Scheduling - standards
Personnel Staffing and Scheduling - statistics & numerical data
Pharmacists
Phenotypes
Physical Therapists - statistics & numerical data
Physical Therapists - supply & distribution
Physicians - statistics & numerical data
Physicians - supply & distribution
Pneumology/Respiratory System
Regression analysis
Retrospective Studies
Risk analysis
Statistical analysis
Time Factors
Unsupervised learning
Unsupervised Machine Learning - trends
Ventilation
Workforce planning
title ICU staffing feature phenotypes and their relationship with patients’ outcomes: an unsupervised machine learning analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ICU%20staffing%20feature%20phenotypes%20and%20their%20relationship%20with%20patients%E2%80%99%20outcomes:%20an%20unsupervised%20machine%20learning%20analysis&rft.jtitle=Intensive%20care%20medicine&rft.au=Zampieri,%20Fernando%20G.&rft.aucorp=ORCHESTRA%20Study%20Investigators&rft.date=2019-11-01&rft.volume=45&rft.issue=11&rft.spage=1599&rft.epage=1607&rft.pages=1599-1607&rft.issn=0342-4642&rft.eissn=1432-1238&rft_id=info:doi/10.1007/s00134-019-05790-z&rft_dat=%3Cgale_proqu%3EA724266028%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307930382&rft_id=info:pmid/31595349&rft_galeid=A724266028&rfr_iscdi=true