ICU staffing feature phenotypes and their relationship with patients’ outcomes: an unsupervised machine learning analysis
Purpose To study whether ICU staffing features are associated with improved hospital mortality, ICU length of stay (LOS) and duration of mechanical ventilation (MV) using cluster analysis directed by machine learning. Methods The following variables were included in the analysis: average bed to nurs...
Gespeichert in:
Veröffentlicht in: | Intensive care medicine 2019-11, Vol.45 (11), p.1599-1607 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1607 |
---|---|
container_issue | 11 |
container_start_page | 1599 |
container_title | Intensive care medicine |
container_volume | 45 |
creator | Zampieri, Fernando G. Salluh, Jorge I. F. Azevedo, Luciano C. P. Kahn, Jeremy M. Damiani, Lucas P. Borges, Lunna P. Viana, William N. Costa, Roberto Corrêa, Thiago D. Araya, Dieter E. S. Maia, Marcelo O. Ferez, Marcus A. Carvalho, Alexandre G. R. Knibel, Marcos F. Melo, Ulisses O. Santino, Marcelo S. Lisboa, Thiago Caser, Eliana B. Besen, Bruno A. M. P. Bozza, Fernando A. Angus, Derek C. Soares, Marcio |
description | Purpose
To study whether ICU staffing features are associated with improved hospital mortality, ICU length of stay (LOS) and duration of mechanical ventilation (MV) using cluster analysis directed by machine learning.
Methods
The following variables were included in the analysis: average bed to nurse, physiotherapist and physician ratios, presence of 24/7 board-certified intensivists and dedicated pharmacists in the ICU, and nurse and physiotherapist autonomy scores. Clusters were defined using the partition around medoids method. We assessed the association between clusters and hospital mortality using logistic regression and with ICU LOS and MV duration using competing risk regression.
Results
Analysis included data from 129,680 patients admitted to 93 ICUs (2014–2015). Three clusters were identified. The features distinguishing between the clusters were: the presence of board-certified intensivists in the ICU 24/7 (present in Cluster 3), dedicated pharmacists (present in Clusters 2 and 3) and the extent of nurse autonomy (which increased from Clusters 1 to 3). The patients in Cluster 3 exhibited the best outcomes, with lower adjusted hospital mortality [odds ratio 0.92 (95% confidence interval (CI), 0.87–0.98)], shorter ICU LOS [subhazard ratio (SHR) for patients surviving to ICU discharge 1.24 (95% CI 1.22–1.26)] and shorter durations of MV [SHR for undergoing extubation 1.61(95% CI 1.54–1.69)]. Cluster 1 had the worst outcomes.
Conclusion
Patients treated in ICUs combining 24/7 expert intensivist coverage, a dedicated pharmacist and nurses with greater autonomy had the best outcomes. All of these features represent achievable targets that should be considered by policy makers with an interest in promoting equal and optimal ICU care. |
doi_str_mv | 10.1007/s00134-019-05790-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2303201881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724266028</galeid><sourcerecordid>A724266028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-49b439ddf4e212fcf09940af9debb5f519a4a136295c41d21c393ad5c34790f03</originalsourceid><addsrcrecordid>eNp9ksuKFDEUhoMoTjv6Ai4k4MZNjbnVJe6GxsvAgBtnHdKpk64MVUmZpJQeN76Gr-eTmJ4eHZRGsghJvv_POYcfoeeUnFFC2teJEMpFRaisSN1KUt08QCsqOKso491DtCJcsEo0gp2gJyldF7xtavoYnXBay5oLuULfLtZXOGVtrfNbbEHnJQKeB_Ah72ZIWPse5wFcxBFGnV3waXAz_urygOdyBp_Tz-8_cFiyCROkN0WBF5-WGeIXl6DHkzaD84BH0NHvf9Fej7vk0lP0yOoxwbO7_RRdvXv7af2huvz4_mJ9flmZmolcCbkRXPa9FcAos8YSKQXRVvaw2dS2plILTXnDZG0E7Rk1XHLd14aLMhRL-Cl6dfCdY_i8QMpqcsnAOGoPYUmKccIZoV1HC_ryH_Q6LLHUe0u1spAdu6e2egTlvA05arM3VectE6xpCOsKVR2htuAh6jF4sK5c_8WfHeHL6mFy5qiAHQQmhpQiWDVHN-m4U5SofULUISGqJETdJkTdFNGLuw6XzQT9H8nvSBSAH4BUnvwW4v0I_mP7C-6cx6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307930382</pqid></control><display><type>article</type><title>ICU staffing feature phenotypes and their relationship with patients’ outcomes: an unsupervised machine learning analysis</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Zampieri, Fernando G. ; Salluh, Jorge I. F. ; Azevedo, Luciano C. P. ; Kahn, Jeremy M. ; Damiani, Lucas P. ; Borges, Lunna P. ; Viana, William N. ; Costa, Roberto ; Corrêa, Thiago D. ; Araya, Dieter E. S. ; Maia, Marcelo O. ; Ferez, Marcus A. ; Carvalho, Alexandre G. R. ; Knibel, Marcos F. ; Melo, Ulisses O. ; Santino, Marcelo S. ; Lisboa, Thiago ; Caser, Eliana B. ; Besen, Bruno A. M. P. ; Bozza, Fernando A. ; Angus, Derek C. ; Soares, Marcio</creator><creatorcontrib>Zampieri, Fernando G. ; Salluh, Jorge I. F. ; Azevedo, Luciano C. P. ; Kahn, Jeremy M. ; Damiani, Lucas P. ; Borges, Lunna P. ; Viana, William N. ; Costa, Roberto ; Corrêa, Thiago D. ; Araya, Dieter E. S. ; Maia, Marcelo O. ; Ferez, Marcus A. ; Carvalho, Alexandre G. R. ; Knibel, Marcos F. ; Melo, Ulisses O. ; Santino, Marcelo S. ; Lisboa, Thiago ; Caser, Eliana B. ; Besen, Bruno A. M. P. ; Bozza, Fernando A. ; Angus, Derek C. ; Soares, Marcio ; ORCHESTRA Study Investigators ; the ORCHESTRA Study Investigators</creatorcontrib><description>Purpose
To study whether ICU staffing features are associated with improved hospital mortality, ICU length of stay (LOS) and duration of mechanical ventilation (MV) using cluster analysis directed by machine learning.
Methods
The following variables were included in the analysis: average bed to nurse, physiotherapist and physician ratios, presence of 24/7 board-certified intensivists and dedicated pharmacists in the ICU, and nurse and physiotherapist autonomy scores. Clusters were defined using the partition around medoids method. We assessed the association between clusters and hospital mortality using logistic regression and with ICU LOS and MV duration using competing risk regression.
Results
Analysis included data from 129,680 patients admitted to 93 ICUs (2014–2015). Three clusters were identified. The features distinguishing between the clusters were: the presence of board-certified intensivists in the ICU 24/7 (present in Cluster 3), dedicated pharmacists (present in Clusters 2 and 3) and the extent of nurse autonomy (which increased from Clusters 1 to 3). The patients in Cluster 3 exhibited the best outcomes, with lower adjusted hospital mortality [odds ratio 0.92 (95% confidence interval (CI), 0.87–0.98)], shorter ICU LOS [subhazard ratio (SHR) for patients surviving to ICU discharge 1.24 (95% CI 1.22–1.26)] and shorter durations of MV [SHR for undergoing extubation 1.61(95% CI 1.54–1.69)]. Cluster 1 had the worst outcomes.
Conclusion
Patients treated in ICUs combining 24/7 expert intensivist coverage, a dedicated pharmacist and nurses with greater autonomy had the best outcomes. All of these features represent achievable targets that should be considered by policy makers with an interest in promoting equal and optimal ICU care.</description><identifier>ISSN: 0342-4642</identifier><identifier>EISSN: 1432-1238</identifier><identifier>DOI: 10.1007/s00134-019-05790-z</identifier><identifier>PMID: 31595349</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject><![CDATA[Analysis ; Anesthesiology ; Artificial intelligence ; Autonomy ; Brazil ; Cluster Analysis ; Confidence intervals ; Critical Care Medicine ; Emergency Medicine ; Extubation ; Hospital Bed Capacity - statistics & numerical data ; Hospital Mortality - trends ; Humans ; Intensive ; Intensive care ; Intensive Care Units - organization & administration ; Intensive Care Units - statistics & numerical data ; Learning algorithms ; Length of Stay - statistics & numerical data ; Length of Stay - trends ; Logistic Models ; Machine learning ; Mechanical ventilation ; Medical colleges ; Medical personnel ; Medicine ; Medicine & Public Health ; Mortality ; Nurses ; Nurses - statistics & numerical data ; Nurses - supply & distribution ; Odds Ratio ; Organ Dysfunction Scores ; Original ; Pain Medicine ; Patients ; Pediatrics ; Personnel Staffing and Scheduling - classification ; Personnel Staffing and Scheduling - standards ; Personnel Staffing and Scheduling - statistics & numerical data ; Pharmacists ; Phenotypes ; Physical Therapists - statistics & numerical data ; Physical Therapists - supply & distribution ; Physicians - statistics & numerical data ; Physicians - supply & distribution ; Pneumology/Respiratory System ; Regression analysis ; Retrospective Studies ; Risk analysis ; Statistical analysis ; Time Factors ; Unsupervised learning ; Unsupervised Machine Learning - trends ; Ventilation ; Workforce planning]]></subject><ispartof>Intensive care medicine, 2019-11, Vol.45 (11), p.1599-1607</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Intensive Care Medicine is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-49b439ddf4e212fcf09940af9debb5f519a4a136295c41d21c393ad5c34790f03</citedby><cites>FETCH-LOGICAL-c524t-49b439ddf4e212fcf09940af9debb5f519a4a136295c41d21c393ad5c34790f03</cites><orcidid>0000-0001-9315-6386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00134-019-05790-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00134-019-05790-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31595349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zampieri, Fernando G.</creatorcontrib><creatorcontrib>Salluh, Jorge I. F.</creatorcontrib><creatorcontrib>Azevedo, Luciano C. P.</creatorcontrib><creatorcontrib>Kahn, Jeremy M.</creatorcontrib><creatorcontrib>Damiani, Lucas P.</creatorcontrib><creatorcontrib>Borges, Lunna P.</creatorcontrib><creatorcontrib>Viana, William N.</creatorcontrib><creatorcontrib>Costa, Roberto</creatorcontrib><creatorcontrib>Corrêa, Thiago D.</creatorcontrib><creatorcontrib>Araya, Dieter E. S.</creatorcontrib><creatorcontrib>Maia, Marcelo O.</creatorcontrib><creatorcontrib>Ferez, Marcus A.</creatorcontrib><creatorcontrib>Carvalho, Alexandre G. R.</creatorcontrib><creatorcontrib>Knibel, Marcos F.</creatorcontrib><creatorcontrib>Melo, Ulisses O.</creatorcontrib><creatorcontrib>Santino, Marcelo S.</creatorcontrib><creatorcontrib>Lisboa, Thiago</creatorcontrib><creatorcontrib>Caser, Eliana B.</creatorcontrib><creatorcontrib>Besen, Bruno A. M. P.</creatorcontrib><creatorcontrib>Bozza, Fernando A.</creatorcontrib><creatorcontrib>Angus, Derek C.</creatorcontrib><creatorcontrib>Soares, Marcio</creatorcontrib><creatorcontrib>ORCHESTRA Study Investigators</creatorcontrib><creatorcontrib>the ORCHESTRA Study Investigators</creatorcontrib><title>ICU staffing feature phenotypes and their relationship with patients’ outcomes: an unsupervised machine learning analysis</title><title>Intensive care medicine</title><addtitle>Intensive Care Med</addtitle><addtitle>Intensive Care Med</addtitle><description>Purpose
To study whether ICU staffing features are associated with improved hospital mortality, ICU length of stay (LOS) and duration of mechanical ventilation (MV) using cluster analysis directed by machine learning.
Methods
The following variables were included in the analysis: average bed to nurse, physiotherapist and physician ratios, presence of 24/7 board-certified intensivists and dedicated pharmacists in the ICU, and nurse and physiotherapist autonomy scores. Clusters were defined using the partition around medoids method. We assessed the association between clusters and hospital mortality using logistic regression and with ICU LOS and MV duration using competing risk regression.
Results
Analysis included data from 129,680 patients admitted to 93 ICUs (2014–2015). Three clusters were identified. The features distinguishing between the clusters were: the presence of board-certified intensivists in the ICU 24/7 (present in Cluster 3), dedicated pharmacists (present in Clusters 2 and 3) and the extent of nurse autonomy (which increased from Clusters 1 to 3). The patients in Cluster 3 exhibited the best outcomes, with lower adjusted hospital mortality [odds ratio 0.92 (95% confidence interval (CI), 0.87–0.98)], shorter ICU LOS [subhazard ratio (SHR) for patients surviving to ICU discharge 1.24 (95% CI 1.22–1.26)] and shorter durations of MV [SHR for undergoing extubation 1.61(95% CI 1.54–1.69)]. Cluster 1 had the worst outcomes.
Conclusion
Patients treated in ICUs combining 24/7 expert intensivist coverage, a dedicated pharmacist and nurses with greater autonomy had the best outcomes. All of these features represent achievable targets that should be considered by policy makers with an interest in promoting equal and optimal ICU care.</description><subject>Analysis</subject><subject>Anesthesiology</subject><subject>Artificial intelligence</subject><subject>Autonomy</subject><subject>Brazil</subject><subject>Cluster Analysis</subject><subject>Confidence intervals</subject><subject>Critical Care Medicine</subject><subject>Emergency Medicine</subject><subject>Extubation</subject><subject>Hospital Bed Capacity - statistics & numerical data</subject><subject>Hospital Mortality - trends</subject><subject>Humans</subject><subject>Intensive</subject><subject>Intensive care</subject><subject>Intensive Care Units - organization & administration</subject><subject>Intensive Care Units - statistics & numerical data</subject><subject>Learning algorithms</subject><subject>Length of Stay - statistics & numerical data</subject><subject>Length of Stay - trends</subject><subject>Logistic Models</subject><subject>Machine learning</subject><subject>Mechanical ventilation</subject><subject>Medical colleges</subject><subject>Medical personnel</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mortality</subject><subject>Nurses</subject><subject>Nurses - statistics & numerical data</subject><subject>Nurses - supply & distribution</subject><subject>Odds Ratio</subject><subject>Organ Dysfunction Scores</subject><subject>Original</subject><subject>Pain Medicine</subject><subject>Patients</subject><subject>Pediatrics</subject><subject>Personnel Staffing and Scheduling - classification</subject><subject>Personnel Staffing and Scheduling - standards</subject><subject>Personnel Staffing and Scheduling - statistics & numerical data</subject><subject>Pharmacists</subject><subject>Phenotypes</subject><subject>Physical Therapists - statistics & numerical data</subject><subject>Physical Therapists - supply & distribution</subject><subject>Physicians - statistics & numerical data</subject><subject>Physicians - supply & distribution</subject><subject>Pneumology/Respiratory System</subject><subject>Regression analysis</subject><subject>Retrospective Studies</subject><subject>Risk analysis</subject><subject>Statistical analysis</subject><subject>Time Factors</subject><subject>Unsupervised learning</subject><subject>Unsupervised Machine Learning - trends</subject><subject>Ventilation</subject><subject>Workforce planning</subject><issn>0342-4642</issn><issn>1432-1238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9ksuKFDEUhoMoTjv6Ai4k4MZNjbnVJe6GxsvAgBtnHdKpk64MVUmZpJQeN76Gr-eTmJ4eHZRGsghJvv_POYcfoeeUnFFC2teJEMpFRaisSN1KUt08QCsqOKso491DtCJcsEo0gp2gJyldF7xtavoYnXBay5oLuULfLtZXOGVtrfNbbEHnJQKeB_Ah72ZIWPse5wFcxBFGnV3waXAz_urygOdyBp_Tz-8_cFiyCROkN0WBF5-WGeIXl6DHkzaD84BH0NHvf9Fej7vk0lP0yOoxwbO7_RRdvXv7af2huvz4_mJ9flmZmolcCbkRXPa9FcAos8YSKQXRVvaw2dS2plILTXnDZG0E7Rk1XHLd14aLMhRL-Cl6dfCdY_i8QMpqcsnAOGoPYUmKccIZoV1HC_ryH_Q6LLHUe0u1spAdu6e2egTlvA05arM3VectE6xpCOsKVR2htuAh6jF4sK5c_8WfHeHL6mFy5qiAHQQmhpQiWDVHN-m4U5SofULUISGqJETdJkTdFNGLuw6XzQT9H8nvSBSAH4BUnvwW4v0I_mP7C-6cx6M</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zampieri, Fernando G.</creator><creator>Salluh, Jorge I. F.</creator><creator>Azevedo, Luciano C. P.</creator><creator>Kahn, Jeremy M.</creator><creator>Damiani, Lucas P.</creator><creator>Borges, Lunna P.</creator><creator>Viana, William N.</creator><creator>Costa, Roberto</creator><creator>Corrêa, Thiago D.</creator><creator>Araya, Dieter E. S.</creator><creator>Maia, Marcelo O.</creator><creator>Ferez, Marcus A.</creator><creator>Carvalho, Alexandre G. R.</creator><creator>Knibel, Marcos F.</creator><creator>Melo, Ulisses O.</creator><creator>Santino, Marcelo S.</creator><creator>Lisboa, Thiago</creator><creator>Caser, Eliana B.</creator><creator>Besen, Bruno A. M. P.</creator><creator>Bozza, Fernando A.</creator><creator>Angus, Derek C.</creator><creator>Soares, Marcio</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9315-6386</orcidid></search><sort><creationdate>20191101</creationdate><title>ICU staffing feature phenotypes and their relationship with patients’ outcomes: an unsupervised machine learning analysis</title><author>Zampieri, Fernando G. ; Salluh, Jorge I. F. ; Azevedo, Luciano C. P. ; Kahn, Jeremy M. ; Damiani, Lucas P. ; Borges, Lunna P. ; Viana, William N. ; Costa, Roberto ; Corrêa, Thiago D. ; Araya, Dieter E. S. ; Maia, Marcelo O. ; Ferez, Marcus A. ; Carvalho, Alexandre G. R. ; Knibel, Marcos F. ; Melo, Ulisses O. ; Santino, Marcelo S. ; Lisboa, Thiago ; Caser, Eliana B. ; Besen, Bruno A. M. P. ; Bozza, Fernando A. ; Angus, Derek C. ; Soares, Marcio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-49b439ddf4e212fcf09940af9debb5f519a4a136295c41d21c393ad5c34790f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Anesthesiology</topic><topic>Artificial intelligence</topic><topic>Autonomy</topic><topic>Brazil</topic><topic>Cluster Analysis</topic><topic>Confidence intervals</topic><topic>Critical Care Medicine</topic><topic>Emergency Medicine</topic><topic>Extubation</topic><topic>Hospital Bed Capacity - statistics & numerical data</topic><topic>Hospital Mortality - trends</topic><topic>Humans</topic><topic>Intensive</topic><topic>Intensive care</topic><topic>Intensive Care Units - organization & administration</topic><topic>Intensive Care Units - statistics & numerical data</topic><topic>Learning algorithms</topic><topic>Length of Stay - statistics & numerical data</topic><topic>Length of Stay - trends</topic><topic>Logistic Models</topic><topic>Machine learning</topic><topic>Mechanical ventilation</topic><topic>Medical colleges</topic><topic>Medical personnel</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mortality</topic><topic>Nurses</topic><topic>Nurses - statistics & numerical data</topic><topic>Nurses - supply & distribution</topic><topic>Odds Ratio</topic><topic>Organ Dysfunction Scores</topic><topic>Original</topic><topic>Pain Medicine</topic><topic>Patients</topic><topic>Pediatrics</topic><topic>Personnel Staffing and Scheduling - classification</topic><topic>Personnel Staffing and Scheduling - standards</topic><topic>Personnel Staffing and Scheduling - statistics & numerical data</topic><topic>Pharmacists</topic><topic>Phenotypes</topic><topic>Physical Therapists - statistics & numerical data</topic><topic>Physical Therapists - supply & distribution</topic><topic>Physicians - statistics & numerical data</topic><topic>Physicians - supply & distribution</topic><topic>Pneumology/Respiratory System</topic><topic>Regression analysis</topic><topic>Retrospective Studies</topic><topic>Risk analysis</topic><topic>Statistical analysis</topic><topic>Time Factors</topic><topic>Unsupervised learning</topic><topic>Unsupervised Machine Learning - trends</topic><topic>Ventilation</topic><topic>Workforce planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zampieri, Fernando G.</creatorcontrib><creatorcontrib>Salluh, Jorge I. F.</creatorcontrib><creatorcontrib>Azevedo, Luciano C. P.</creatorcontrib><creatorcontrib>Kahn, Jeremy M.</creatorcontrib><creatorcontrib>Damiani, Lucas P.</creatorcontrib><creatorcontrib>Borges, Lunna P.</creatorcontrib><creatorcontrib>Viana, William N.</creatorcontrib><creatorcontrib>Costa, Roberto</creatorcontrib><creatorcontrib>Corrêa, Thiago D.</creatorcontrib><creatorcontrib>Araya, Dieter E. S.</creatorcontrib><creatorcontrib>Maia, Marcelo O.</creatorcontrib><creatorcontrib>Ferez, Marcus A.</creatorcontrib><creatorcontrib>Carvalho, Alexandre G. R.</creatorcontrib><creatorcontrib>Knibel, Marcos F.</creatorcontrib><creatorcontrib>Melo, Ulisses O.</creatorcontrib><creatorcontrib>Santino, Marcelo S.</creatorcontrib><creatorcontrib>Lisboa, Thiago</creatorcontrib><creatorcontrib>Caser, Eliana B.</creatorcontrib><creatorcontrib>Besen, Bruno A. M. P.</creatorcontrib><creatorcontrib>Bozza, Fernando A.</creatorcontrib><creatorcontrib>Angus, Derek C.</creatorcontrib><creatorcontrib>Soares, Marcio</creatorcontrib><creatorcontrib>ORCHESTRA Study Investigators</creatorcontrib><creatorcontrib>the ORCHESTRA Study Investigators</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Intensive care medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zampieri, Fernando G.</au><au>Salluh, Jorge I. F.</au><au>Azevedo, Luciano C. P.</au><au>Kahn, Jeremy M.</au><au>Damiani, Lucas P.</au><au>Borges, Lunna P.</au><au>Viana, William N.</au><au>Costa, Roberto</au><au>Corrêa, Thiago D.</au><au>Araya, Dieter E. S.</au><au>Maia, Marcelo O.</au><au>Ferez, Marcus A.</au><au>Carvalho, Alexandre G. R.</au><au>Knibel, Marcos F.</au><au>Melo, Ulisses O.</au><au>Santino, Marcelo S.</au><au>Lisboa, Thiago</au><au>Caser, Eliana B.</au><au>Besen, Bruno A. M. P.</au><au>Bozza, Fernando A.</au><au>Angus, Derek C.</au><au>Soares, Marcio</au><aucorp>ORCHESTRA Study Investigators</aucorp><aucorp>the ORCHESTRA Study Investigators</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ICU staffing feature phenotypes and their relationship with patients’ outcomes: an unsupervised machine learning analysis</atitle><jtitle>Intensive care medicine</jtitle><stitle>Intensive Care Med</stitle><addtitle>Intensive Care Med</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>45</volume><issue>11</issue><spage>1599</spage><epage>1607</epage><pages>1599-1607</pages><issn>0342-4642</issn><eissn>1432-1238</eissn><abstract>Purpose
To study whether ICU staffing features are associated with improved hospital mortality, ICU length of stay (LOS) and duration of mechanical ventilation (MV) using cluster analysis directed by machine learning.
Methods
The following variables were included in the analysis: average bed to nurse, physiotherapist and physician ratios, presence of 24/7 board-certified intensivists and dedicated pharmacists in the ICU, and nurse and physiotherapist autonomy scores. Clusters were defined using the partition around medoids method. We assessed the association between clusters and hospital mortality using logistic regression and with ICU LOS and MV duration using competing risk regression.
Results
Analysis included data from 129,680 patients admitted to 93 ICUs (2014–2015). Three clusters were identified. The features distinguishing between the clusters were: the presence of board-certified intensivists in the ICU 24/7 (present in Cluster 3), dedicated pharmacists (present in Clusters 2 and 3) and the extent of nurse autonomy (which increased from Clusters 1 to 3). The patients in Cluster 3 exhibited the best outcomes, with lower adjusted hospital mortality [odds ratio 0.92 (95% confidence interval (CI), 0.87–0.98)], shorter ICU LOS [subhazard ratio (SHR) for patients surviving to ICU discharge 1.24 (95% CI 1.22–1.26)] and shorter durations of MV [SHR for undergoing extubation 1.61(95% CI 1.54–1.69)]. Cluster 1 had the worst outcomes.
Conclusion
Patients treated in ICUs combining 24/7 expert intensivist coverage, a dedicated pharmacist and nurses with greater autonomy had the best outcomes. All of these features represent achievable targets that should be considered by policy makers with an interest in promoting equal and optimal ICU care.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31595349</pmid><doi>10.1007/s00134-019-05790-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9315-6386</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0342-4642 |
ispartof | Intensive care medicine, 2019-11, Vol.45 (11), p.1599-1607 |
issn | 0342-4642 1432-1238 |
language | eng |
recordid | cdi_proquest_miscellaneous_2303201881 |
source | MEDLINE; SpringerNature Journals |
subjects | Analysis Anesthesiology Artificial intelligence Autonomy Brazil Cluster Analysis Confidence intervals Critical Care Medicine Emergency Medicine Extubation Hospital Bed Capacity - statistics & numerical data Hospital Mortality - trends Humans Intensive Intensive care Intensive Care Units - organization & administration Intensive Care Units - statistics & numerical data Learning algorithms Length of Stay - statistics & numerical data Length of Stay - trends Logistic Models Machine learning Mechanical ventilation Medical colleges Medical personnel Medicine Medicine & Public Health Mortality Nurses Nurses - statistics & numerical data Nurses - supply & distribution Odds Ratio Organ Dysfunction Scores Original Pain Medicine Patients Pediatrics Personnel Staffing and Scheduling - classification Personnel Staffing and Scheduling - standards Personnel Staffing and Scheduling - statistics & numerical data Pharmacists Phenotypes Physical Therapists - statistics & numerical data Physical Therapists - supply & distribution Physicians - statistics & numerical data Physicians - supply & distribution Pneumology/Respiratory System Regression analysis Retrospective Studies Risk analysis Statistical analysis Time Factors Unsupervised learning Unsupervised Machine Learning - trends Ventilation Workforce planning |
title | ICU staffing feature phenotypes and their relationship with patients’ outcomes: an unsupervised machine learning analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ICU%20staffing%20feature%20phenotypes%20and%20their%20relationship%20with%20patients%E2%80%99%20outcomes:%20an%20unsupervised%20machine%20learning%20analysis&rft.jtitle=Intensive%20care%20medicine&rft.au=Zampieri,%20Fernando%20G.&rft.aucorp=ORCHESTRA%20Study%20Investigators&rft.date=2019-11-01&rft.volume=45&rft.issue=11&rft.spage=1599&rft.epage=1607&rft.pages=1599-1607&rft.issn=0342-4642&rft.eissn=1432-1238&rft_id=info:doi/10.1007/s00134-019-05790-z&rft_dat=%3Cgale_proqu%3EA724266028%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307930382&rft_id=info:pmid/31595349&rft_galeid=A724266028&rfr_iscdi=true |