A Population Pharmacokinetic Model of Oral Docetaxel Coadministered With Ritonavir to Support Early Clinical Development

Oral administration of docetaxel is an attractive alternative for conventional intravenous (IV) administration. The low bioavailability of docetaxel, however, hinders the application of oral docetaxel in the clinic. The aim of the current study was to develop a population pharmacokinetic (PK) model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical pharmacology 2020-03, Vol.60 (3), p.340-350
Hauptverfasser: Yu, Huixin, Janssen, Julie M., Sawicki, Emilia, Hasselt, J. G. Coen, Weger, Vincent A., Nuijen, Bastiaan, Schellens, Jan H. M., Beijnen, Jos H., Huitema, Alwin D. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue 3
container_start_page 340
container_title Journal of clinical pharmacology
container_volume 60
creator Yu, Huixin
Janssen, Julie M.
Sawicki, Emilia
Hasselt, J. G. Coen
Weger, Vincent A.
Nuijen, Bastiaan
Schellens, Jan H. M.
Beijnen, Jos H.
Huitema, Alwin D. R.
description Oral administration of docetaxel is an attractive alternative for conventional intravenous (IV) administration. The low bioavailability of docetaxel, however, hinders the application of oral docetaxel in the clinic. The aim of the current study was to develop a population pharmacokinetic (PK) model for docetaxel and ritonavir based on the phase 1 studies and to support drug development of this combination treatment. PK data were collected from 191 patients who received IV docetaxel and different oral docetaxel formulations (drinking solution, ModraDoc001 capsule, and ModraDoc006 tablet) coadministered with ritonavir. A PK model was first developed for ritonavir. Subsequently, a semiphysiological PK model was developed for docetaxel, which incorporated the inhibition of docetaxel metabolism by ritonavir. The uninhibited intrinsic clearance of docetaxel was estimated based on data on IV docetaxel as 1980 L/h (relative standard error, 11%). Ritonavir coadministration extensively inhibited the hepatic metabolism of docetaxel to 9.3%, which resulted in up to 12‐fold higher docetaxel plasma concentrations compared to oral docetaxel coadministered without ritonavir. In conclusion, a semiphysiological PK model for docetaxel and ritonavir was successfully developed. Coadministration of ritonavir resulted in increased plasma concentrations of docetaxel after administration of the oral formulations of ModraDoc. Furthermore, the oral ModraDoc formulations showed lower variability in plasma concentrations between and within patients compared to the drinking solution. Comparable exposure could be reached with the oral ModraDoc formulations compared to IV administration.
doi_str_mv 10.1002/jcph.1532
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2303200179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350896132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4712-8c0d7c38e87575db1fd40365547160503f2d9ed0f0420463731ad50c65cd3df3</originalsourceid><addsrcrecordid>eNp9kU9vFSEUxYnR2Gd14RcwJG7qYtoLDPNn2Yyt1bTpizZxOaHAZHhlhhGYtu_by_ieLoyVDeHyu4fLOQi9JXBMAOjJRk79MeGMPkMrwjnN8gLy52gFUJOMlgAH6FUIGwBS5Jy8RAeM8JrXFazQ4yleu2m2Iho34nUv_CCkuzOjjkbiK6e0xa7D115Y_NFJHcVjqjROqMGMJkTttcLfTezxVxPdKO6Nx9Hhb_M0OR_xmfB2ixubWLko6Htt3TToMb5GLzphg36z3w_RzfnZTXORXV5_-tycXmYyLwnNKgmqlKzSVclLrm5Jp3JgBefptgAOrKOq1go6yCnkBSsZEYqDLLhUTHXsEB3tZCfvfsw6xHYwQWprxajdHFrKgNFkTFkn9P1f6MbNfkzDJYpDVReE0UR92FHSuxC87trJm0H4bUugXdJolzTaJY3EvtsrzreDVn_I3_YnINsBD84mK8OdnR-0b3stbOz_KZj_h4e08pR2RiF9iaVTtpSq1HaybzNWb58euP3SrC9-PfQTqLOy9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350896132</pqid></control><display><type>article</type><title>A Population Pharmacokinetic Model of Oral Docetaxel Coadministered With Ritonavir to Support Early Clinical Development</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Yu, Huixin ; Janssen, Julie M. ; Sawicki, Emilia ; Hasselt, J. G. Coen ; Weger, Vincent A. ; Nuijen, Bastiaan ; Schellens, Jan H. M. ; Beijnen, Jos H. ; Huitema, Alwin D. R.</creator><creatorcontrib>Yu, Huixin ; Janssen, Julie M. ; Sawicki, Emilia ; Hasselt, J. G. Coen ; Weger, Vincent A. ; Nuijen, Bastiaan ; Schellens, Jan H. M. ; Beijnen, Jos H. ; Huitema, Alwin D. R.</creatorcontrib><description>Oral administration of docetaxel is an attractive alternative for conventional intravenous (IV) administration. The low bioavailability of docetaxel, however, hinders the application of oral docetaxel in the clinic. The aim of the current study was to develop a population pharmacokinetic (PK) model for docetaxel and ritonavir based on the phase 1 studies and to support drug development of this combination treatment. PK data were collected from 191 patients who received IV docetaxel and different oral docetaxel formulations (drinking solution, ModraDoc001 capsule, and ModraDoc006 tablet) coadministered with ritonavir. A PK model was first developed for ritonavir. Subsequently, a semiphysiological PK model was developed for docetaxel, which incorporated the inhibition of docetaxel metabolism by ritonavir. The uninhibited intrinsic clearance of docetaxel was estimated based on data on IV docetaxel as 1980 L/h (relative standard error, 11%). Ritonavir coadministration extensively inhibited the hepatic metabolism of docetaxel to 9.3%, which resulted in up to 12‐fold higher docetaxel plasma concentrations compared to oral docetaxel coadministered without ritonavir. In conclusion, a semiphysiological PK model for docetaxel and ritonavir was successfully developed. Coadministration of ritonavir resulted in increased plasma concentrations of docetaxel after administration of the oral formulations of ModraDoc. Furthermore, the oral ModraDoc formulations showed lower variability in plasma concentrations between and within patients compared to the drinking solution. Comparable exposure could be reached with the oral ModraDoc formulations compared to IV administration.</description><identifier>ISSN: 0091-2700</identifier><identifier>EISSN: 1552-4604</identifier><identifier>DOI: 10.1002/jcph.1532</identifier><identifier>PMID: 31595980</identifier><language>eng</language><publisher>England: American College of Clinical Pharmacology</publisher><subject>Administration, Oral ; Antineoplastic Agents - administration &amp; dosage ; Antineoplastic Agents - blood ; Antineoplastic Agents - pharmacokinetics ; Antineoplastic Agents - radiation effects ; Antineoplastic Combined Chemotherapy Protocols - administration &amp; dosage ; Antineoplastic Combined Chemotherapy Protocols - pharmacokinetics ; Antiretroviral drugs ; Antiviral drugs ; Bioavailability ; Biological Availability ; Clinical Trials, Phase I as Topic ; Computer Simulation ; Cytochrome P-450 CYP3A Inhibitors - administration &amp; dosage ; Cytochrome P-450 CYP3A Inhibitors - pharmacokinetics ; docetaxel ; Docetaxel - administration &amp; dosage ; Docetaxel - blood ; Docetaxel - pharmacokinetics ; Dosage Forms ; Drug Administration Schedule ; Drug development ; Humans ; Infusions, Intravenous ; Intravenous administration ; Metabolism ; Models, Biological ; ModraDoc ; Neoplasms - drug therapy ; oral ; Oral administration ; Patients ; Pharmacokinetics ; population PK ; Ritonavir ; Ritonavir - administration &amp; dosage ; Ritonavir - pharmacokinetics ; Ritonavir - poisoning ; Software</subject><ispartof>Journal of clinical pharmacology, 2020-03, Vol.60 (3), p.340-350</ispartof><rights>2019, The American College of Clinical Pharmacology</rights><rights>2020 American College of Clinical Pharmacology</rights><rights>2019 American College of Clinical Pharmacology</rights><rights>2019, The American College of Clinical Pharmacology.</rights><rights>2020, The American College of Clinical Pharmacology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4712-8c0d7c38e87575db1fd40365547160503f2d9ed0f0420463731ad50c65cd3df3</citedby><cites>FETCH-LOGICAL-c4712-8c0d7c38e87575db1fd40365547160503f2d9ed0f0420463731ad50c65cd3df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcph.1532$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcph.1532$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31595980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Huixin</creatorcontrib><creatorcontrib>Janssen, Julie M.</creatorcontrib><creatorcontrib>Sawicki, Emilia</creatorcontrib><creatorcontrib>Hasselt, J. G. Coen</creatorcontrib><creatorcontrib>Weger, Vincent A.</creatorcontrib><creatorcontrib>Nuijen, Bastiaan</creatorcontrib><creatorcontrib>Schellens, Jan H. M.</creatorcontrib><creatorcontrib>Beijnen, Jos H.</creatorcontrib><creatorcontrib>Huitema, Alwin D. R.</creatorcontrib><title>A Population Pharmacokinetic Model of Oral Docetaxel Coadministered With Ritonavir to Support Early Clinical Development</title><title>Journal of clinical pharmacology</title><addtitle>J Clin Pharmacol</addtitle><description>Oral administration of docetaxel is an attractive alternative for conventional intravenous (IV) administration. The low bioavailability of docetaxel, however, hinders the application of oral docetaxel in the clinic. The aim of the current study was to develop a population pharmacokinetic (PK) model for docetaxel and ritonavir based on the phase 1 studies and to support drug development of this combination treatment. PK data were collected from 191 patients who received IV docetaxel and different oral docetaxel formulations (drinking solution, ModraDoc001 capsule, and ModraDoc006 tablet) coadministered with ritonavir. A PK model was first developed for ritonavir. Subsequently, a semiphysiological PK model was developed for docetaxel, which incorporated the inhibition of docetaxel metabolism by ritonavir. The uninhibited intrinsic clearance of docetaxel was estimated based on data on IV docetaxel as 1980 L/h (relative standard error, 11%). Ritonavir coadministration extensively inhibited the hepatic metabolism of docetaxel to 9.3%, which resulted in up to 12‐fold higher docetaxel plasma concentrations compared to oral docetaxel coadministered without ritonavir. In conclusion, a semiphysiological PK model for docetaxel and ritonavir was successfully developed. Coadministration of ritonavir resulted in increased plasma concentrations of docetaxel after administration of the oral formulations of ModraDoc. Furthermore, the oral ModraDoc formulations showed lower variability in plasma concentrations between and within patients compared to the drinking solution. Comparable exposure could be reached with the oral ModraDoc formulations compared to IV administration.</description><subject>Administration, Oral</subject><subject>Antineoplastic Agents - administration &amp; dosage</subject><subject>Antineoplastic Agents - blood</subject><subject>Antineoplastic Agents - pharmacokinetics</subject><subject>Antineoplastic Agents - radiation effects</subject><subject>Antineoplastic Combined Chemotherapy Protocols - administration &amp; dosage</subject><subject>Antineoplastic Combined Chemotherapy Protocols - pharmacokinetics</subject><subject>Antiretroviral drugs</subject><subject>Antiviral drugs</subject><subject>Bioavailability</subject><subject>Biological Availability</subject><subject>Clinical Trials, Phase I as Topic</subject><subject>Computer Simulation</subject><subject>Cytochrome P-450 CYP3A Inhibitors - administration &amp; dosage</subject><subject>Cytochrome P-450 CYP3A Inhibitors - pharmacokinetics</subject><subject>docetaxel</subject><subject>Docetaxel - administration &amp; dosage</subject><subject>Docetaxel - blood</subject><subject>Docetaxel - pharmacokinetics</subject><subject>Dosage Forms</subject><subject>Drug Administration Schedule</subject><subject>Drug development</subject><subject>Humans</subject><subject>Infusions, Intravenous</subject><subject>Intravenous administration</subject><subject>Metabolism</subject><subject>Models, Biological</subject><subject>ModraDoc</subject><subject>Neoplasms - drug therapy</subject><subject>oral</subject><subject>Oral administration</subject><subject>Patients</subject><subject>Pharmacokinetics</subject><subject>population PK</subject><subject>Ritonavir</subject><subject>Ritonavir - administration &amp; dosage</subject><subject>Ritonavir - pharmacokinetics</subject><subject>Ritonavir - poisoning</subject><subject>Software</subject><issn>0091-2700</issn><issn>1552-4604</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9vFSEUxYnR2Gd14RcwJG7qYtoLDPNn2Yyt1bTpizZxOaHAZHhlhhGYtu_by_ieLoyVDeHyu4fLOQi9JXBMAOjJRk79MeGMPkMrwjnN8gLy52gFUJOMlgAH6FUIGwBS5Jy8RAeM8JrXFazQ4yleu2m2Iho34nUv_CCkuzOjjkbiK6e0xa7D115Y_NFJHcVjqjROqMGMJkTttcLfTezxVxPdKO6Nx9Hhb_M0OR_xmfB2ixubWLko6Htt3TToMb5GLzphg36z3w_RzfnZTXORXV5_-tycXmYyLwnNKgmqlKzSVclLrm5Jp3JgBefptgAOrKOq1go6yCnkBSsZEYqDLLhUTHXsEB3tZCfvfsw6xHYwQWprxajdHFrKgNFkTFkn9P1f6MbNfkzDJYpDVReE0UR92FHSuxC87trJm0H4bUugXdJolzTaJY3EvtsrzreDVn_I3_YnINsBD84mK8OdnR-0b3stbOz_KZj_h4e08pR2RiF9iaVTtpSq1HaybzNWb58euP3SrC9-PfQTqLOy9Q</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Yu, Huixin</creator><creator>Janssen, Julie M.</creator><creator>Sawicki, Emilia</creator><creator>Hasselt, J. G. Coen</creator><creator>Weger, Vincent A.</creator><creator>Nuijen, Bastiaan</creator><creator>Schellens, Jan H. M.</creator><creator>Beijnen, Jos H.</creator><creator>Huitema, Alwin D. R.</creator><general>American College of Clinical Pharmacology</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>202003</creationdate><title>A Population Pharmacokinetic Model of Oral Docetaxel Coadministered With Ritonavir to Support Early Clinical Development</title><author>Yu, Huixin ; Janssen, Julie M. ; Sawicki, Emilia ; Hasselt, J. G. Coen ; Weger, Vincent A. ; Nuijen, Bastiaan ; Schellens, Jan H. M. ; Beijnen, Jos H. ; Huitema, Alwin D. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4712-8c0d7c38e87575db1fd40365547160503f2d9ed0f0420463731ad50c65cd3df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Administration, Oral</topic><topic>Antineoplastic Agents - administration &amp; dosage</topic><topic>Antineoplastic Agents - blood</topic><topic>Antineoplastic Agents - pharmacokinetics</topic><topic>Antineoplastic Agents - radiation effects</topic><topic>Antineoplastic Combined Chemotherapy Protocols - administration &amp; dosage</topic><topic>Antineoplastic Combined Chemotherapy Protocols - pharmacokinetics</topic><topic>Antiretroviral drugs</topic><topic>Antiviral drugs</topic><topic>Bioavailability</topic><topic>Biological Availability</topic><topic>Clinical Trials, Phase I as Topic</topic><topic>Computer Simulation</topic><topic>Cytochrome P-450 CYP3A Inhibitors - administration &amp; dosage</topic><topic>Cytochrome P-450 CYP3A Inhibitors - pharmacokinetics</topic><topic>docetaxel</topic><topic>Docetaxel - administration &amp; dosage</topic><topic>Docetaxel - blood</topic><topic>Docetaxel - pharmacokinetics</topic><topic>Dosage Forms</topic><topic>Drug Administration Schedule</topic><topic>Drug development</topic><topic>Humans</topic><topic>Infusions, Intravenous</topic><topic>Intravenous administration</topic><topic>Metabolism</topic><topic>Models, Biological</topic><topic>ModraDoc</topic><topic>Neoplasms - drug therapy</topic><topic>oral</topic><topic>Oral administration</topic><topic>Patients</topic><topic>Pharmacokinetics</topic><topic>population PK</topic><topic>Ritonavir</topic><topic>Ritonavir - administration &amp; dosage</topic><topic>Ritonavir - pharmacokinetics</topic><topic>Ritonavir - poisoning</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Huixin</creatorcontrib><creatorcontrib>Janssen, Julie M.</creatorcontrib><creatorcontrib>Sawicki, Emilia</creatorcontrib><creatorcontrib>Hasselt, J. G. Coen</creatorcontrib><creatorcontrib>Weger, Vincent A.</creatorcontrib><creatorcontrib>Nuijen, Bastiaan</creatorcontrib><creatorcontrib>Schellens, Jan H. M.</creatorcontrib><creatorcontrib>Beijnen, Jos H.</creatorcontrib><creatorcontrib>Huitema, Alwin D. R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Huixin</au><au>Janssen, Julie M.</au><au>Sawicki, Emilia</au><au>Hasselt, J. G. Coen</au><au>Weger, Vincent A.</au><au>Nuijen, Bastiaan</au><au>Schellens, Jan H. M.</au><au>Beijnen, Jos H.</au><au>Huitema, Alwin D. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Population Pharmacokinetic Model of Oral Docetaxel Coadministered With Ritonavir to Support Early Clinical Development</atitle><jtitle>Journal of clinical pharmacology</jtitle><addtitle>J Clin Pharmacol</addtitle><date>2020-03</date><risdate>2020</risdate><volume>60</volume><issue>3</issue><spage>340</spage><epage>350</epage><pages>340-350</pages><issn>0091-2700</issn><eissn>1552-4604</eissn><abstract>Oral administration of docetaxel is an attractive alternative for conventional intravenous (IV) administration. The low bioavailability of docetaxel, however, hinders the application of oral docetaxel in the clinic. The aim of the current study was to develop a population pharmacokinetic (PK) model for docetaxel and ritonavir based on the phase 1 studies and to support drug development of this combination treatment. PK data were collected from 191 patients who received IV docetaxel and different oral docetaxel formulations (drinking solution, ModraDoc001 capsule, and ModraDoc006 tablet) coadministered with ritonavir. A PK model was first developed for ritonavir. Subsequently, a semiphysiological PK model was developed for docetaxel, which incorporated the inhibition of docetaxel metabolism by ritonavir. The uninhibited intrinsic clearance of docetaxel was estimated based on data on IV docetaxel as 1980 L/h (relative standard error, 11%). Ritonavir coadministration extensively inhibited the hepatic metabolism of docetaxel to 9.3%, which resulted in up to 12‐fold higher docetaxel plasma concentrations compared to oral docetaxel coadministered without ritonavir. In conclusion, a semiphysiological PK model for docetaxel and ritonavir was successfully developed. Coadministration of ritonavir resulted in increased plasma concentrations of docetaxel after administration of the oral formulations of ModraDoc. Furthermore, the oral ModraDoc formulations showed lower variability in plasma concentrations between and within patients compared to the drinking solution. Comparable exposure could be reached with the oral ModraDoc formulations compared to IV administration.</abstract><cop>England</cop><pub>American College of Clinical Pharmacology</pub><pmid>31595980</pmid><doi>10.1002/jcph.1532</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-2700
ispartof Journal of clinical pharmacology, 2020-03, Vol.60 (3), p.340-350
issn 0091-2700
1552-4604
language eng
recordid cdi_proquest_miscellaneous_2303200179
source MEDLINE; Access via Wiley Online Library
subjects Administration, Oral
Antineoplastic Agents - administration & dosage
Antineoplastic Agents - blood
Antineoplastic Agents - pharmacokinetics
Antineoplastic Agents - radiation effects
Antineoplastic Combined Chemotherapy Protocols - administration & dosage
Antineoplastic Combined Chemotherapy Protocols - pharmacokinetics
Antiretroviral drugs
Antiviral drugs
Bioavailability
Biological Availability
Clinical Trials, Phase I as Topic
Computer Simulation
Cytochrome P-450 CYP3A Inhibitors - administration & dosage
Cytochrome P-450 CYP3A Inhibitors - pharmacokinetics
docetaxel
Docetaxel - administration & dosage
Docetaxel - blood
Docetaxel - pharmacokinetics
Dosage Forms
Drug Administration Schedule
Drug development
Humans
Infusions, Intravenous
Intravenous administration
Metabolism
Models, Biological
ModraDoc
Neoplasms - drug therapy
oral
Oral administration
Patients
Pharmacokinetics
population PK
Ritonavir
Ritonavir - administration & dosage
Ritonavir - pharmacokinetics
Ritonavir - poisoning
Software
title A Population Pharmacokinetic Model of Oral Docetaxel Coadministered With Ritonavir to Support Early Clinical Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Population%20Pharmacokinetic%20Model%20of%20Oral%20Docetaxel%20Coadministered%20With%20Ritonavir%20to%20Support%20Early%20Clinical%20Development&rft.jtitle=Journal%20of%20clinical%20pharmacology&rft.au=Yu,%20Huixin&rft.date=2020-03&rft.volume=60&rft.issue=3&rft.spage=340&rft.epage=350&rft.pages=340-350&rft.issn=0091-2700&rft.eissn=1552-4604&rft_id=info:doi/10.1002/jcph.1532&rft_dat=%3Cproquest_cross%3E2350896132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350896132&rft_id=info:pmid/31595980&rfr_iscdi=true