NMF-RI: blind spectral unmixing of highly mixed multispectral flow and image cytometry data

Abstract Motivation Recent advances in multiplex immunostaining and multispectral cytometry have opened the door to simultaneously visualizing an unprecedented number of biomarkers both in liquid and solid samples. Properly unmixing fluorescent emissions is a challenging task, which normally require...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2020-03, Vol.36 (5), p.1590-1598
Hauptverfasser: Jiménez-Sánchez, Daniel, Ariz, Mikel, Morgado, José Mário, Cortés-Domínguez, Iván, Ortiz-de-Solórzano, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1598
container_issue 5
container_start_page 1590
container_title Bioinformatics
container_volume 36
creator Jiménez-Sánchez, Daniel
Ariz, Mikel
Morgado, José Mário
Cortés-Domínguez, Iván
Ortiz-de-Solórzano, Carlos
description Abstract Motivation Recent advances in multiplex immunostaining and multispectral cytometry have opened the door to simultaneously visualizing an unprecedented number of biomarkers both in liquid and solid samples. Properly unmixing fluorescent emissions is a challenging task, which normally requires the characterization of the individual fluorochromes from control samples. As the number of fluorochromes increases, the cost in time and use of reagents becomes prohibitively high. Here, we present a fully unsupervised blind spectral unmixing method for the separation of fluorescent emissions in highly mixed spectral data, without the need for control samples. To this end, we extend an existing method based on non-negative Matrix Factorization, and introduce several critical improvements: initialization based on the theoretical spectra, automated selection of ‘sparse’ data and use of a re-initialized multilayer optimizer. Results Our algorithm is exhaustively tested using synthetic data to study its robustness against different levels of colocalization, signal to noise ratio, spectral resolution and the effect of errors in the initialization of the algorithm. Then, we compare the performance of our method to that of traditional spectral unmixing algorithms using novel multispectral flow and image cytometry systems. In all cases, we show that our blind unmixing algorithm performs robust unmixing of highly spatially and spectrally mixed data with an unprecedently low computational cost. In summary, we present the first use of a blind unmixing method in multispectral flow and image cytometry, opening the door to the widespread use of our method to efficiently pre-process multiplex immunostaining samples without the need of experimental controls. Availability and implementation https://github.com/djimenezsanchez/Blind_Unmixing_NMF_RI/ contains the source code and all datasets used in this manuscript. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btz751
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2302466985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz751</oup_id><sourcerecordid>2302466985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-632e76dfc07fbf2cba976cb8ae516d95e0eb3c033984916393e9110b82fa437c3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMo7rr6E5QcvdTNR5s23kRcXVgVRE8eSpImu5G2qU2K1l9vpeuCN08zDM87MzwAnGJ0gRGnc2mdrY1rKxGs8nMZvtIE74EpjhmKCEr4_tBTlkZxhugEHHn_hlCC4zg-BBOKE04JIVPw-nC_iJ6Wl1CWti6gb7QKrShhV1f209Zr6Azc2PWm7OEw0AWsujLYHWZK9wHFELSVWGuo-uAqHdoeFiKIY3BgROn1ybbOwMvi5vn6Llo93i6vr1aRojwNEaNEp6wwCqVGGqKk4ClTMhM6wazgiUZaUoUo5VnMMaOcao4xkhkxIqapojNwPu5tWvfeaR_yynqly1LU2nU-JxSRmDGeJQOajKhqnfetNnnTDq-3fY5R_uM1_-s1H70OubPtiU5WutilfkUOABoB1zX_3PkNhkyLhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302466985</pqid></control><display><type>article</type><title>NMF-RI: blind spectral unmixing of highly mixed multispectral flow and image cytometry data</title><source>Oxford Journals Open Access Collection</source><creator>Jiménez-Sánchez, Daniel ; Ariz, Mikel ; Morgado, José Mário ; Cortés-Domínguez, Iván ; Ortiz-de-Solórzano, Carlos</creator><contributor>Murphy, Robert</contributor><creatorcontrib>Jiménez-Sánchez, Daniel ; Ariz, Mikel ; Morgado, José Mário ; Cortés-Domínguez, Iván ; Ortiz-de-Solórzano, Carlos ; Murphy, Robert</creatorcontrib><description>Abstract Motivation Recent advances in multiplex immunostaining and multispectral cytometry have opened the door to simultaneously visualizing an unprecedented number of biomarkers both in liquid and solid samples. Properly unmixing fluorescent emissions is a challenging task, which normally requires the characterization of the individual fluorochromes from control samples. As the number of fluorochromes increases, the cost in time and use of reagents becomes prohibitively high. Here, we present a fully unsupervised blind spectral unmixing method for the separation of fluorescent emissions in highly mixed spectral data, without the need for control samples. To this end, we extend an existing method based on non-negative Matrix Factorization, and introduce several critical improvements: initialization based on the theoretical spectra, automated selection of ‘sparse’ data and use of a re-initialized multilayer optimizer. Results Our algorithm is exhaustively tested using synthetic data to study its robustness against different levels of colocalization, signal to noise ratio, spectral resolution and the effect of errors in the initialization of the algorithm. Then, we compare the performance of our method to that of traditional spectral unmixing algorithms using novel multispectral flow and image cytometry systems. In all cases, we show that our blind unmixing algorithm performs robust unmixing of highly spatially and spectrally mixed data with an unprecedently low computational cost. In summary, we present the first use of a blind unmixing method in multispectral flow and image cytometry, opening the door to the widespread use of our method to efficiently pre-process multiplex immunostaining samples without the need of experimental controls. Availability and implementation https://github.com/djimenezsanchez/Blind_Unmixing_NMF_RI/ contains the source code and all datasets used in this manuscript. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz751</identifier><identifier>PMID: 31593222</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Fluorescent Dyes ; Image Cytometry ; Software</subject><ispartof>Bioinformatics, 2020-03, Vol.36 (5), p.1590-1598</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-632e76dfc07fbf2cba976cb8ae516d95e0eb3c033984916393e9110b82fa437c3</citedby><cites>FETCH-LOGICAL-c397t-632e76dfc07fbf2cba976cb8ae516d95e0eb3c033984916393e9110b82fa437c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btz751$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31593222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Murphy, Robert</contributor><creatorcontrib>Jiménez-Sánchez, Daniel</creatorcontrib><creatorcontrib>Ariz, Mikel</creatorcontrib><creatorcontrib>Morgado, José Mário</creatorcontrib><creatorcontrib>Cortés-Domínguez, Iván</creatorcontrib><creatorcontrib>Ortiz-de-Solórzano, Carlos</creatorcontrib><title>NMF-RI: blind spectral unmixing of highly mixed multispectral flow and image cytometry data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Recent advances in multiplex immunostaining and multispectral cytometry have opened the door to simultaneously visualizing an unprecedented number of biomarkers both in liquid and solid samples. Properly unmixing fluorescent emissions is a challenging task, which normally requires the characterization of the individual fluorochromes from control samples. As the number of fluorochromes increases, the cost in time and use of reagents becomes prohibitively high. Here, we present a fully unsupervised blind spectral unmixing method for the separation of fluorescent emissions in highly mixed spectral data, without the need for control samples. To this end, we extend an existing method based on non-negative Matrix Factorization, and introduce several critical improvements: initialization based on the theoretical spectra, automated selection of ‘sparse’ data and use of a re-initialized multilayer optimizer. Results Our algorithm is exhaustively tested using synthetic data to study its robustness against different levels of colocalization, signal to noise ratio, spectral resolution and the effect of errors in the initialization of the algorithm. Then, we compare the performance of our method to that of traditional spectral unmixing algorithms using novel multispectral flow and image cytometry systems. In all cases, we show that our blind unmixing algorithm performs robust unmixing of highly spatially and spectrally mixed data with an unprecedently low computational cost. In summary, we present the first use of a blind unmixing method in multispectral flow and image cytometry, opening the door to the widespread use of our method to efficiently pre-process multiplex immunostaining samples without the need of experimental controls. Availability and implementation https://github.com/djimenezsanchez/Blind_Unmixing_NMF_RI/ contains the source code and all datasets used in this manuscript. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Fluorescent Dyes</subject><subject>Image Cytometry</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1LxDAQhoMo7rr6E5QcvdTNR5s23kRcXVgVRE8eSpImu5G2qU2K1l9vpeuCN08zDM87MzwAnGJ0gRGnc2mdrY1rKxGs8nMZvtIE74EpjhmKCEr4_tBTlkZxhugEHHn_hlCC4zg-BBOKE04JIVPw-nC_iJ6Wl1CWti6gb7QKrShhV1f209Zr6Azc2PWm7OEw0AWsujLYHWZK9wHFELSVWGuo-uAqHdoeFiKIY3BgROn1ybbOwMvi5vn6Llo93i6vr1aRojwNEaNEp6wwCqVGGqKk4ClTMhM6wazgiUZaUoUo5VnMMaOcao4xkhkxIqapojNwPu5tWvfeaR_yynqly1LU2nU-JxSRmDGeJQOajKhqnfetNnnTDq-3fY5R_uM1_-s1H70OubPtiU5WutilfkUOABoB1zX_3PkNhkyLhA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Jiménez-Sánchez, Daniel</creator><creator>Ariz, Mikel</creator><creator>Morgado, José Mário</creator><creator>Cortés-Domínguez, Iván</creator><creator>Ortiz-de-Solórzano, Carlos</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200301</creationdate><title>NMF-RI: blind spectral unmixing of highly mixed multispectral flow and image cytometry data</title><author>Jiménez-Sánchez, Daniel ; Ariz, Mikel ; Morgado, José Mário ; Cortés-Domínguez, Iván ; Ortiz-de-Solórzano, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-632e76dfc07fbf2cba976cb8ae516d95e0eb3c033984916393e9110b82fa437c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Fluorescent Dyes</topic><topic>Image Cytometry</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiménez-Sánchez, Daniel</creatorcontrib><creatorcontrib>Ariz, Mikel</creatorcontrib><creatorcontrib>Morgado, José Mário</creatorcontrib><creatorcontrib>Cortés-Domínguez, Iván</creatorcontrib><creatorcontrib>Ortiz-de-Solórzano, Carlos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiménez-Sánchez, Daniel</au><au>Ariz, Mikel</au><au>Morgado, José Mário</au><au>Cortés-Domínguez, Iván</au><au>Ortiz-de-Solórzano, Carlos</au><au>Murphy, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NMF-RI: blind spectral unmixing of highly mixed multispectral flow and image cytometry data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>36</volume><issue>5</issue><spage>1590</spage><epage>1598</epage><pages>1590-1598</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Recent advances in multiplex immunostaining and multispectral cytometry have opened the door to simultaneously visualizing an unprecedented number of biomarkers both in liquid and solid samples. Properly unmixing fluorescent emissions is a challenging task, which normally requires the characterization of the individual fluorochromes from control samples. As the number of fluorochromes increases, the cost in time and use of reagents becomes prohibitively high. Here, we present a fully unsupervised blind spectral unmixing method for the separation of fluorescent emissions in highly mixed spectral data, without the need for control samples. To this end, we extend an existing method based on non-negative Matrix Factorization, and introduce several critical improvements: initialization based on the theoretical spectra, automated selection of ‘sparse’ data and use of a re-initialized multilayer optimizer. Results Our algorithm is exhaustively tested using synthetic data to study its robustness against different levels of colocalization, signal to noise ratio, spectral resolution and the effect of errors in the initialization of the algorithm. Then, we compare the performance of our method to that of traditional spectral unmixing algorithms using novel multispectral flow and image cytometry systems. In all cases, we show that our blind unmixing algorithm performs robust unmixing of highly spatially and spectrally mixed data with an unprecedently low computational cost. In summary, we present the first use of a blind unmixing method in multispectral flow and image cytometry, opening the door to the widespread use of our method to efficiently pre-process multiplex immunostaining samples without the need of experimental controls. Availability and implementation https://github.com/djimenezsanchez/Blind_Unmixing_NMF_RI/ contains the source code and all datasets used in this manuscript. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31593222</pmid><doi>10.1093/bioinformatics/btz751</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2020-03, Vol.36 (5), p.1590-1598
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_2302466985
source Oxford Journals Open Access Collection
subjects Algorithms
Fluorescent Dyes
Image Cytometry
Software
title NMF-RI: blind spectral unmixing of highly mixed multispectral flow and image cytometry data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NMF-RI:%20blind%20spectral%20unmixing%20of%20highly%20mixed%20multispectral%20flow%20and%20image%20cytometry%20data&rft.jtitle=Bioinformatics&rft.au=Jim%C3%A9nez-S%C3%A1nchez,%20Daniel&rft.date=2020-03-01&rft.volume=36&rft.issue=5&rft.spage=1590&rft.epage=1598&rft.pages=1590-1598&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btz751&rft_dat=%3Cproquest_TOX%3E2302466985%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2302466985&rft_id=info:pmid/31593222&rft_oup_id=10.1093/bioinformatics/btz751&rfr_iscdi=true