Extremely Robust Gas-Quenching Deposition of Halide Perovskites on Top of Hydrophobic Hole Transport Materials for Inverted (p–i–n) Solar Cells by Targeting the Precursor Wetting Issue
Lead halide perovskite solar cells afford high power conversion efficiencies, even though the photoactive layer is formed in a solution process. At the same time, solution processing may impose some severe dewetting issues, especially if organic, hydrophobic charge transport layers are considered. U...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-10, Vol.11 (43), p.40172-40179 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40179 |
---|---|
container_issue | 43 |
container_start_page | 40172 |
container_title | ACS applied materials & interfaces |
container_volume | 11 |
creator | Brinkmann, Kai Oliver He, Junjie Schubert, Felix Malerczyk, Jessica Kreusel, Cedric van gen Hassend, Frederic Weber, Sebastian Song, Jun Qu, Junle Riedl, Thomas |
description | Lead halide perovskite solar cells afford high power conversion efficiencies, even though the photoactive layer is formed in a solution process. At the same time, solution processing may impose some severe dewetting issues, especially if organic, hydrophobic charge transport layers are considered. Ultimately, very narrow processing windows with a relatively large spread in device performance and a considerable lab-to-lab variation result. Here, we unambiguously identify dimethylsulfoxide (DMSO), which is commonly used as a co-solvent and complexing agent, to be the main reason for dewetting of the precursor solution on hydrophobic hole transport layers, such as polytriarylamine, in a gas-quenching-assisted deposition process. In striking contrast, we will show that N-methyl-2-pyrrolidon (NMP), which has a lower hydrophilic–lipophilic-balance, can be favorably used instead of DMSO to strongly mitigate these dewetting issues. The resulting high-quality perovskite layers are extremely tolerant with respect to the mixing ratio (NMP/dimethylformamide) and other process parameters. Thus, our findings afford an outstandingly robust, easy to use, and fail-safe deposition technique, yielding single (MAPbI3) and double (FA0.94Cs0.06PbI3) cation perovskite solar cells with high efficiencies (∼18.5%). Most notably, the statistical variation of the devices is significantly reduced, even if the deposition process is performed by different persons. We foresee that our results will further the reliable preparation of perovskite thin films and mitigate process-to-process variations that still hinder the prospects of upscaling perovskite solar technology. |
doi_str_mv | 10.1021/acsami.9b15867 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2301438925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2301438925</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-229a61677414e77b54f25c74460ef6d622c9c114dbd370032b558673afb06b683</originalsourceid><addsrcrecordid>eNp1Uc1u1DAQjhBIlMKVs48FKVvbcZzNES2lu1Kr8rOIY2Q7k65LNg4zTsXeeAdep0_TJ8Hbrbj1MJrRzPfN35dlbwWfCS7FqXFktn5WW1HOdfUsOxK1UvlclvL5_1ipl9krohvOdSF5eZTdnf2OCFvod-xrsBNFdm4o_zLB4DZ-uGYfYQzkow8DCx1bmt63wD4Dhlv66SMQS4V1GB-KuxbDuAnWO7YMPbA1moHGgJFdmgjoTU-sC8hWwy1ghJadjPd__vpkwzv2LfQG2QL6BLI7tjZ4DXG_QdykgQhuQkrcHxAfsiuiCV5nL7rUFN48-uPs-6ez9WKZX1ydrxYfLnJT8CrmUtZGC11VSiioKluqTpauUkpz6HSrpXS1E0K1ti0qzgtpy_0HC9NZrq2eF8fZyaHviOHXBBSbrSeXVjUDhIkaWXChinktywSdHaAOAxFC14zotwZ3jeDNXqbmIFPzKFMivD8QUr65CRMO6ZKnwP8AjT6ZXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301438925</pqid></control><display><type>article</type><title>Extremely Robust Gas-Quenching Deposition of Halide Perovskites on Top of Hydrophobic Hole Transport Materials for Inverted (p–i–n) Solar Cells by Targeting the Precursor Wetting Issue</title><source>ACS Publications</source><creator>Brinkmann, Kai Oliver ; He, Junjie ; Schubert, Felix ; Malerczyk, Jessica ; Kreusel, Cedric ; van gen Hassend, Frederic ; Weber, Sebastian ; Song, Jun ; Qu, Junle ; Riedl, Thomas</creator><creatorcontrib>Brinkmann, Kai Oliver ; He, Junjie ; Schubert, Felix ; Malerczyk, Jessica ; Kreusel, Cedric ; van gen Hassend, Frederic ; Weber, Sebastian ; Song, Jun ; Qu, Junle ; Riedl, Thomas</creatorcontrib><description>Lead halide perovskite solar cells afford high power conversion efficiencies, even though the photoactive layer is formed in a solution process. At the same time, solution processing may impose some severe dewetting issues, especially if organic, hydrophobic charge transport layers are considered. Ultimately, very narrow processing windows with a relatively large spread in device performance and a considerable lab-to-lab variation result. Here, we unambiguously identify dimethylsulfoxide (DMSO), which is commonly used as a co-solvent and complexing agent, to be the main reason for dewetting of the precursor solution on hydrophobic hole transport layers, such as polytriarylamine, in a gas-quenching-assisted deposition process. In striking contrast, we will show that N-methyl-2-pyrrolidon (NMP), which has a lower hydrophilic–lipophilic-balance, can be favorably used instead of DMSO to strongly mitigate these dewetting issues. The resulting high-quality perovskite layers are extremely tolerant with respect to the mixing ratio (NMP/dimethylformamide) and other process parameters. Thus, our findings afford an outstandingly robust, easy to use, and fail-safe deposition technique, yielding single (MAPbI3) and double (FA0.94Cs0.06PbI3) cation perovskite solar cells with high efficiencies (∼18.5%). Most notably, the statistical variation of the devices is significantly reduced, even if the deposition process is performed by different persons. We foresee that our results will further the reliable preparation of perovskite thin films and mitigate process-to-process variations that still hinder the prospects of upscaling perovskite solar technology.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b15867</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2019-10, Vol.11 (43), p.40172-40179</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-229a61677414e77b54f25c74460ef6d622c9c114dbd370032b558673afb06b683</citedby><cites>FETCH-LOGICAL-a307t-229a61677414e77b54f25c74460ef6d622c9c114dbd370032b558673afb06b683</cites><orcidid>0000-0002-2124-3904 ; 0000-0002-2321-7064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b15867$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b15867$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Brinkmann, Kai Oliver</creatorcontrib><creatorcontrib>He, Junjie</creatorcontrib><creatorcontrib>Schubert, Felix</creatorcontrib><creatorcontrib>Malerczyk, Jessica</creatorcontrib><creatorcontrib>Kreusel, Cedric</creatorcontrib><creatorcontrib>van gen Hassend, Frederic</creatorcontrib><creatorcontrib>Weber, Sebastian</creatorcontrib><creatorcontrib>Song, Jun</creatorcontrib><creatorcontrib>Qu, Junle</creatorcontrib><creatorcontrib>Riedl, Thomas</creatorcontrib><title>Extremely Robust Gas-Quenching Deposition of Halide Perovskites on Top of Hydrophobic Hole Transport Materials for Inverted (p–i–n) Solar Cells by Targeting the Precursor Wetting Issue</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Lead halide perovskite solar cells afford high power conversion efficiencies, even though the photoactive layer is formed in a solution process. At the same time, solution processing may impose some severe dewetting issues, especially if organic, hydrophobic charge transport layers are considered. Ultimately, very narrow processing windows with a relatively large spread in device performance and a considerable lab-to-lab variation result. Here, we unambiguously identify dimethylsulfoxide (DMSO), which is commonly used as a co-solvent and complexing agent, to be the main reason for dewetting of the precursor solution on hydrophobic hole transport layers, such as polytriarylamine, in a gas-quenching-assisted deposition process. In striking contrast, we will show that N-methyl-2-pyrrolidon (NMP), which has a lower hydrophilic–lipophilic-balance, can be favorably used instead of DMSO to strongly mitigate these dewetting issues. The resulting high-quality perovskite layers are extremely tolerant with respect to the mixing ratio (NMP/dimethylformamide) and other process parameters. Thus, our findings afford an outstandingly robust, easy to use, and fail-safe deposition technique, yielding single (MAPbI3) and double (FA0.94Cs0.06PbI3) cation perovskite solar cells with high efficiencies (∼18.5%). Most notably, the statistical variation of the devices is significantly reduced, even if the deposition process is performed by different persons. We foresee that our results will further the reliable preparation of perovskite thin films and mitigate process-to-process variations that still hinder the prospects of upscaling perovskite solar technology.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1Uc1u1DAQjhBIlMKVs48FKVvbcZzNES2lu1Kr8rOIY2Q7k65LNg4zTsXeeAdep0_TJ8Hbrbj1MJrRzPfN35dlbwWfCS7FqXFktn5WW1HOdfUsOxK1UvlclvL5_1ipl9krohvOdSF5eZTdnf2OCFvod-xrsBNFdm4o_zLB4DZ-uGYfYQzkow8DCx1bmt63wD4Dhlv66SMQS4V1GB-KuxbDuAnWO7YMPbA1moHGgJFdmgjoTU-sC8hWwy1ghJadjPd__vpkwzv2LfQG2QL6BLI7tjZ4DXG_QdykgQhuQkrcHxAfsiuiCV5nL7rUFN48-uPs-6ez9WKZX1ydrxYfLnJT8CrmUtZGC11VSiioKluqTpauUkpz6HSrpXS1E0K1ti0qzgtpy_0HC9NZrq2eF8fZyaHviOHXBBSbrSeXVjUDhIkaWXChinktywSdHaAOAxFC14zotwZ3jeDNXqbmIFPzKFMivD8QUr65CRMO6ZKnwP8AjT6ZXw</recordid><startdate>20191030</startdate><enddate>20191030</enddate><creator>Brinkmann, Kai Oliver</creator><creator>He, Junjie</creator><creator>Schubert, Felix</creator><creator>Malerczyk, Jessica</creator><creator>Kreusel, Cedric</creator><creator>van gen Hassend, Frederic</creator><creator>Weber, Sebastian</creator><creator>Song, Jun</creator><creator>Qu, Junle</creator><creator>Riedl, Thomas</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2124-3904</orcidid><orcidid>https://orcid.org/0000-0002-2321-7064</orcidid></search><sort><creationdate>20191030</creationdate><title>Extremely Robust Gas-Quenching Deposition of Halide Perovskites on Top of Hydrophobic Hole Transport Materials for Inverted (p–i–n) Solar Cells by Targeting the Precursor Wetting Issue</title><author>Brinkmann, Kai Oliver ; He, Junjie ; Schubert, Felix ; Malerczyk, Jessica ; Kreusel, Cedric ; van gen Hassend, Frederic ; Weber, Sebastian ; Song, Jun ; Qu, Junle ; Riedl, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-229a61677414e77b54f25c74460ef6d622c9c114dbd370032b558673afb06b683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brinkmann, Kai Oliver</creatorcontrib><creatorcontrib>He, Junjie</creatorcontrib><creatorcontrib>Schubert, Felix</creatorcontrib><creatorcontrib>Malerczyk, Jessica</creatorcontrib><creatorcontrib>Kreusel, Cedric</creatorcontrib><creatorcontrib>van gen Hassend, Frederic</creatorcontrib><creatorcontrib>Weber, Sebastian</creatorcontrib><creatorcontrib>Song, Jun</creatorcontrib><creatorcontrib>Qu, Junle</creatorcontrib><creatorcontrib>Riedl, Thomas</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brinkmann, Kai Oliver</au><au>He, Junjie</au><au>Schubert, Felix</au><au>Malerczyk, Jessica</au><au>Kreusel, Cedric</au><au>van gen Hassend, Frederic</au><au>Weber, Sebastian</au><au>Song, Jun</au><au>Qu, Junle</au><au>Riedl, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremely Robust Gas-Quenching Deposition of Halide Perovskites on Top of Hydrophobic Hole Transport Materials for Inverted (p–i–n) Solar Cells by Targeting the Precursor Wetting Issue</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-10-30</date><risdate>2019</risdate><volume>11</volume><issue>43</issue><spage>40172</spage><epage>40179</epage><pages>40172-40179</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Lead halide perovskite solar cells afford high power conversion efficiencies, even though the photoactive layer is formed in a solution process. At the same time, solution processing may impose some severe dewetting issues, especially if organic, hydrophobic charge transport layers are considered. Ultimately, very narrow processing windows with a relatively large spread in device performance and a considerable lab-to-lab variation result. Here, we unambiguously identify dimethylsulfoxide (DMSO), which is commonly used as a co-solvent and complexing agent, to be the main reason for dewetting of the precursor solution on hydrophobic hole transport layers, such as polytriarylamine, in a gas-quenching-assisted deposition process. In striking contrast, we will show that N-methyl-2-pyrrolidon (NMP), which has a lower hydrophilic–lipophilic-balance, can be favorably used instead of DMSO to strongly mitigate these dewetting issues. The resulting high-quality perovskite layers are extremely tolerant with respect to the mixing ratio (NMP/dimethylformamide) and other process parameters. Thus, our findings afford an outstandingly robust, easy to use, and fail-safe deposition technique, yielding single (MAPbI3) and double (FA0.94Cs0.06PbI3) cation perovskite solar cells with high efficiencies (∼18.5%). Most notably, the statistical variation of the devices is significantly reduced, even if the deposition process is performed by different persons. We foresee that our results will further the reliable preparation of perovskite thin films and mitigate process-to-process variations that still hinder the prospects of upscaling perovskite solar technology.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.9b15867</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2124-3904</orcidid><orcidid>https://orcid.org/0000-0002-2321-7064</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2019-10, Vol.11 (43), p.40172-40179 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2301438925 |
source | ACS Publications |
title | Extremely Robust Gas-Quenching Deposition of Halide Perovskites on Top of Hydrophobic Hole Transport Materials for Inverted (p–i–n) Solar Cells by Targeting the Precursor Wetting Issue |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremely%20Robust%20Gas-Quenching%20Deposition%20of%20Halide%20Perovskites%20on%20Top%20of%20Hydrophobic%20Hole%20Transport%20Materials%20for%20Inverted%20(p%E2%80%93i%E2%80%93n)%20Solar%20Cells%20by%20Targeting%20the%20Precursor%20Wetting%20Issue&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Brinkmann,%20Kai%20Oliver&rft.date=2019-10-30&rft.volume=11&rft.issue=43&rft.spage=40172&rft.epage=40179&rft.pages=40172-40179&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b15867&rft_dat=%3Cproquest_cross%3E2301438925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301438925&rft_id=info:pmid/&rfr_iscdi=true |