Extremely Robust Gas-Quenching Deposition of Halide Perovskites on Top of Hydrophobic Hole Transport Materials for Inverted (p–i–n) Solar Cells by Targeting the Precursor Wetting Issue

Lead halide perovskite solar cells afford high power conversion efficiencies, even though the photoactive layer is formed in a solution process. At the same time, solution processing may impose some severe dewetting issues, especially if organic, hydrophobic charge transport layers are considered. U...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-10, Vol.11 (43), p.40172-40179
Hauptverfasser: Brinkmann, Kai Oliver, He, Junjie, Schubert, Felix, Malerczyk, Jessica, Kreusel, Cedric, van gen Hassend, Frederic, Weber, Sebastian, Song, Jun, Qu, Junle, Riedl, Thomas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40179
container_issue 43
container_start_page 40172
container_title ACS applied materials & interfaces
container_volume 11
creator Brinkmann, Kai Oliver
He, Junjie
Schubert, Felix
Malerczyk, Jessica
Kreusel, Cedric
van gen Hassend, Frederic
Weber, Sebastian
Song, Jun
Qu, Junle
Riedl, Thomas
description Lead halide perovskite solar cells afford high power conversion efficiencies, even though the photoactive layer is formed in a solution process. At the same time, solution processing may impose some severe dewetting issues, especially if organic, hydrophobic charge transport layers are considered. Ultimately, very narrow processing windows with a relatively large spread in device performance and a considerable lab-to-lab variation result. Here, we unambiguously identify dimethylsulfoxide (DMSO), which is commonly used as a co-solvent and complexing agent, to be the main reason for dewetting of the precursor solution on hydrophobic hole transport layers, such as polytriarylamine, in a gas-quenching-assisted deposition process. In striking contrast, we will show that N-methyl-2-pyrrolidon (NMP), which has a lower hydrophilic–lipophilic-balance, can be favorably used instead of DMSO to strongly mitigate these dewetting issues. The resulting high-quality perovskite layers are extremely tolerant with respect to the mixing ratio (NMP/dimethylformamide) and other process parameters. Thus, our findings afford an outstandingly robust, easy to use, and fail-safe deposition technique, yielding single (MAPbI3) and double (FA0.94Cs0.06PbI3) cation perovskite solar cells with high efficiencies (∼18.5%). Most notably, the statistical variation of the devices is significantly reduced, even if the deposition process is performed by different persons. We foresee that our results will further the reliable preparation of perovskite thin films and mitigate process-to-process variations that still hinder the prospects of upscaling perovskite solar technology.
doi_str_mv 10.1021/acsami.9b15867
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2301438925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2301438925</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-229a61677414e77b54f25c74460ef6d622c9c114dbd370032b558673afb06b683</originalsourceid><addsrcrecordid>eNp1Uc1u1DAQjhBIlMKVs48FKVvbcZzNES2lu1Kr8rOIY2Q7k65LNg4zTsXeeAdep0_TJ8Hbrbj1MJrRzPfN35dlbwWfCS7FqXFktn5WW1HOdfUsOxK1UvlclvL5_1ipl9krohvOdSF5eZTdnf2OCFvod-xrsBNFdm4o_zLB4DZ-uGYfYQzkow8DCx1bmt63wD4Dhlv66SMQS4V1GB-KuxbDuAnWO7YMPbA1moHGgJFdmgjoTU-sC8hWwy1ghJadjPd__vpkwzv2LfQG2QL6BLI7tjZ4DXG_QdykgQhuQkrcHxAfsiuiCV5nL7rUFN48-uPs-6ez9WKZX1ydrxYfLnJT8CrmUtZGC11VSiioKluqTpauUkpz6HSrpXS1E0K1ti0qzgtpy_0HC9NZrq2eF8fZyaHviOHXBBSbrSeXVjUDhIkaWXChinktywSdHaAOAxFC14zotwZ3jeDNXqbmIFPzKFMivD8QUr65CRMO6ZKnwP8AjT6ZXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301438925</pqid></control><display><type>article</type><title>Extremely Robust Gas-Quenching Deposition of Halide Perovskites on Top of Hydrophobic Hole Transport Materials for Inverted (p–i–n) Solar Cells by Targeting the Precursor Wetting Issue</title><source>ACS Publications</source><creator>Brinkmann, Kai Oliver ; He, Junjie ; Schubert, Felix ; Malerczyk, Jessica ; Kreusel, Cedric ; van gen Hassend, Frederic ; Weber, Sebastian ; Song, Jun ; Qu, Junle ; Riedl, Thomas</creator><creatorcontrib>Brinkmann, Kai Oliver ; He, Junjie ; Schubert, Felix ; Malerczyk, Jessica ; Kreusel, Cedric ; van gen Hassend, Frederic ; Weber, Sebastian ; Song, Jun ; Qu, Junle ; Riedl, Thomas</creatorcontrib><description>Lead halide perovskite solar cells afford high power conversion efficiencies, even though the photoactive layer is formed in a solution process. At the same time, solution processing may impose some severe dewetting issues, especially if organic, hydrophobic charge transport layers are considered. Ultimately, very narrow processing windows with a relatively large spread in device performance and a considerable lab-to-lab variation result. Here, we unambiguously identify dimethylsulfoxide (DMSO), which is commonly used as a co-solvent and complexing agent, to be the main reason for dewetting of the precursor solution on hydrophobic hole transport layers, such as polytriarylamine, in a gas-quenching-assisted deposition process. In striking contrast, we will show that N-methyl-2-pyrrolidon (NMP), which has a lower hydrophilic–lipophilic-balance, can be favorably used instead of DMSO to strongly mitigate these dewetting issues. The resulting high-quality perovskite layers are extremely tolerant with respect to the mixing ratio (NMP/dimethylformamide) and other process parameters. Thus, our findings afford an outstandingly robust, easy to use, and fail-safe deposition technique, yielding single (MAPbI3) and double (FA0.94Cs0.06PbI3) cation perovskite solar cells with high efficiencies (∼18.5%). Most notably, the statistical variation of the devices is significantly reduced, even if the deposition process is performed by different persons. We foresee that our results will further the reliable preparation of perovskite thin films and mitigate process-to-process variations that still hinder the prospects of upscaling perovskite solar technology.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b15867</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-10, Vol.11 (43), p.40172-40179</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-229a61677414e77b54f25c74460ef6d622c9c114dbd370032b558673afb06b683</citedby><cites>FETCH-LOGICAL-a307t-229a61677414e77b54f25c74460ef6d622c9c114dbd370032b558673afb06b683</cites><orcidid>0000-0002-2124-3904 ; 0000-0002-2321-7064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b15867$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b15867$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Brinkmann, Kai Oliver</creatorcontrib><creatorcontrib>He, Junjie</creatorcontrib><creatorcontrib>Schubert, Felix</creatorcontrib><creatorcontrib>Malerczyk, Jessica</creatorcontrib><creatorcontrib>Kreusel, Cedric</creatorcontrib><creatorcontrib>van gen Hassend, Frederic</creatorcontrib><creatorcontrib>Weber, Sebastian</creatorcontrib><creatorcontrib>Song, Jun</creatorcontrib><creatorcontrib>Qu, Junle</creatorcontrib><creatorcontrib>Riedl, Thomas</creatorcontrib><title>Extremely Robust Gas-Quenching Deposition of Halide Perovskites on Top of Hydrophobic Hole Transport Materials for Inverted (p–i–n) Solar Cells by Targeting the Precursor Wetting Issue</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Lead halide perovskite solar cells afford high power conversion efficiencies, even though the photoactive layer is formed in a solution process. At the same time, solution processing may impose some severe dewetting issues, especially if organic, hydrophobic charge transport layers are considered. Ultimately, very narrow processing windows with a relatively large spread in device performance and a considerable lab-to-lab variation result. Here, we unambiguously identify dimethylsulfoxide (DMSO), which is commonly used as a co-solvent and complexing agent, to be the main reason for dewetting of the precursor solution on hydrophobic hole transport layers, such as polytriarylamine, in a gas-quenching-assisted deposition process. In striking contrast, we will show that N-methyl-2-pyrrolidon (NMP), which has a lower hydrophilic–lipophilic-balance, can be favorably used instead of DMSO to strongly mitigate these dewetting issues. The resulting high-quality perovskite layers are extremely tolerant with respect to the mixing ratio (NMP/dimethylformamide) and other process parameters. Thus, our findings afford an outstandingly robust, easy to use, and fail-safe deposition technique, yielding single (MAPbI3) and double (FA0.94Cs0.06PbI3) cation perovskite solar cells with high efficiencies (∼18.5%). Most notably, the statistical variation of the devices is significantly reduced, even if the deposition process is performed by different persons. We foresee that our results will further the reliable preparation of perovskite thin films and mitigate process-to-process variations that still hinder the prospects of upscaling perovskite solar technology.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1Uc1u1DAQjhBIlMKVs48FKVvbcZzNES2lu1Kr8rOIY2Q7k65LNg4zTsXeeAdep0_TJ8Hbrbj1MJrRzPfN35dlbwWfCS7FqXFktn5WW1HOdfUsOxK1UvlclvL5_1ipl9krohvOdSF5eZTdnf2OCFvod-xrsBNFdm4o_zLB4DZ-uGYfYQzkow8DCx1bmt63wD4Dhlv66SMQS4V1GB-KuxbDuAnWO7YMPbA1moHGgJFdmgjoTU-sC8hWwy1ghJadjPd__vpkwzv2LfQG2QL6BLI7tjZ4DXG_QdykgQhuQkrcHxAfsiuiCV5nL7rUFN48-uPs-6ez9WKZX1ydrxYfLnJT8CrmUtZGC11VSiioKluqTpauUkpz6HSrpXS1E0K1ti0qzgtpy_0HC9NZrq2eF8fZyaHviOHXBBSbrSeXVjUDhIkaWXChinktywSdHaAOAxFC14zotwZ3jeDNXqbmIFPzKFMivD8QUr65CRMO6ZKnwP8AjT6ZXw</recordid><startdate>20191030</startdate><enddate>20191030</enddate><creator>Brinkmann, Kai Oliver</creator><creator>He, Junjie</creator><creator>Schubert, Felix</creator><creator>Malerczyk, Jessica</creator><creator>Kreusel, Cedric</creator><creator>van gen Hassend, Frederic</creator><creator>Weber, Sebastian</creator><creator>Song, Jun</creator><creator>Qu, Junle</creator><creator>Riedl, Thomas</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2124-3904</orcidid><orcidid>https://orcid.org/0000-0002-2321-7064</orcidid></search><sort><creationdate>20191030</creationdate><title>Extremely Robust Gas-Quenching Deposition of Halide Perovskites on Top of Hydrophobic Hole Transport Materials for Inverted (p–i–n) Solar Cells by Targeting the Precursor Wetting Issue</title><author>Brinkmann, Kai Oliver ; He, Junjie ; Schubert, Felix ; Malerczyk, Jessica ; Kreusel, Cedric ; van gen Hassend, Frederic ; Weber, Sebastian ; Song, Jun ; Qu, Junle ; Riedl, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-229a61677414e77b54f25c74460ef6d622c9c114dbd370032b558673afb06b683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brinkmann, Kai Oliver</creatorcontrib><creatorcontrib>He, Junjie</creatorcontrib><creatorcontrib>Schubert, Felix</creatorcontrib><creatorcontrib>Malerczyk, Jessica</creatorcontrib><creatorcontrib>Kreusel, Cedric</creatorcontrib><creatorcontrib>van gen Hassend, Frederic</creatorcontrib><creatorcontrib>Weber, Sebastian</creatorcontrib><creatorcontrib>Song, Jun</creatorcontrib><creatorcontrib>Qu, Junle</creatorcontrib><creatorcontrib>Riedl, Thomas</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brinkmann, Kai Oliver</au><au>He, Junjie</au><au>Schubert, Felix</au><au>Malerczyk, Jessica</au><au>Kreusel, Cedric</au><au>van gen Hassend, Frederic</au><au>Weber, Sebastian</au><au>Song, Jun</au><au>Qu, Junle</au><au>Riedl, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremely Robust Gas-Quenching Deposition of Halide Perovskites on Top of Hydrophobic Hole Transport Materials for Inverted (p–i–n) Solar Cells by Targeting the Precursor Wetting Issue</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-10-30</date><risdate>2019</risdate><volume>11</volume><issue>43</issue><spage>40172</spage><epage>40179</epage><pages>40172-40179</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Lead halide perovskite solar cells afford high power conversion efficiencies, even though the photoactive layer is formed in a solution process. At the same time, solution processing may impose some severe dewetting issues, especially if organic, hydrophobic charge transport layers are considered. Ultimately, very narrow processing windows with a relatively large spread in device performance and a considerable lab-to-lab variation result. Here, we unambiguously identify dimethylsulfoxide (DMSO), which is commonly used as a co-solvent and complexing agent, to be the main reason for dewetting of the precursor solution on hydrophobic hole transport layers, such as polytriarylamine, in a gas-quenching-assisted deposition process. In striking contrast, we will show that N-methyl-2-pyrrolidon (NMP), which has a lower hydrophilic–lipophilic-balance, can be favorably used instead of DMSO to strongly mitigate these dewetting issues. The resulting high-quality perovskite layers are extremely tolerant with respect to the mixing ratio (NMP/dimethylformamide) and other process parameters. Thus, our findings afford an outstandingly robust, easy to use, and fail-safe deposition technique, yielding single (MAPbI3) and double (FA0.94Cs0.06PbI3) cation perovskite solar cells with high efficiencies (∼18.5%). Most notably, the statistical variation of the devices is significantly reduced, even if the deposition process is performed by different persons. We foresee that our results will further the reliable preparation of perovskite thin films and mitigate process-to-process variations that still hinder the prospects of upscaling perovskite solar technology.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.9b15867</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2124-3904</orcidid><orcidid>https://orcid.org/0000-0002-2321-7064</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-10, Vol.11 (43), p.40172-40179
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2301438925
source ACS Publications
title Extremely Robust Gas-Quenching Deposition of Halide Perovskites on Top of Hydrophobic Hole Transport Materials for Inverted (p–i–n) Solar Cells by Targeting the Precursor Wetting Issue
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremely%20Robust%20Gas-Quenching%20Deposition%20of%20Halide%20Perovskites%20on%20Top%20of%20Hydrophobic%20Hole%20Transport%20Materials%20for%20Inverted%20(p%E2%80%93i%E2%80%93n)%20Solar%20Cells%20by%20Targeting%20the%20Precursor%20Wetting%20Issue&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Brinkmann,%20Kai%20Oliver&rft.date=2019-10-30&rft.volume=11&rft.issue=43&rft.spage=40172&rft.epage=40179&rft.pages=40172-40179&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b15867&rft_dat=%3Cproquest_cross%3E2301438925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301438925&rft_id=info:pmid/&rfr_iscdi=true