Zeolite-Templated Carbon as a Stable, High Power Magnesium-Ion Cathode Material

One strategy to overcome the slow kinetics associated with electrochemical magnesium ion storage is to employ a permanently porous, capacitive cathode material together with magnesium metal as the anode. This strategy has begun to be employed, for example, using framework solids like Prussian blue a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-10, Vol.11 (43), p.39902-39909
Hauptverfasser: Dubey, Romain J.-C, Colijn, Tess, Aebli, Marcel, Hanson, Erin E, Widmer, Roland, Kravchyk, Kostiantyn V, Kovalenko, Maksym V, Stadie, Nicholas P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39909
container_issue 43
container_start_page 39902
container_title ACS applied materials & interfaces
container_volume 11
creator Dubey, Romain J.-C
Colijn, Tess
Aebli, Marcel
Hanson, Erin E
Widmer, Roland
Kravchyk, Kostiantyn V
Kovalenko, Maksym V
Stadie, Nicholas P
description One strategy to overcome the slow kinetics associated with electrochemical magnesium ion storage is to employ a permanently porous, capacitive cathode material together with magnesium metal as the anode. This strategy has begun to be employed, for example, using framework solids like Prussian blue analogues or porous carbons derived from metal–organic frameworks, but the cycling stability of an ordered, bottom-up synthesized, three-dimensional carbon framework toward magnesiation and demagnesiation in a shuttle-type battery remains unexplored. Zeolite-templated carbons (ZTCs) are a class of ordered porous carbonaceous framework materials with numerous superlative properties relevant to electrochemical energy storage. Herein, we report that ZTCs can serve as high-power cathode materials for magnesium-ion hybrid capacitors (MHCs), exhibiting high specific capacities (e.g., 113 mA h g–1 after 100 cycles) with an average discharge voltage of 1.44 V and exceptional capacity retention (e.g., 76% after 200 cycles). ZTC-based MHCs meet or exceed the gravimetric energy densities of state-of-the-art batteries functioning on the Mg2+ shuttle, while simultaneously displaying far superior rate capabilities (e.g., 834 W kg–1 at 600 mA g–1).
doi_str_mv 10.1021/acsami.9b11968
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2301432908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2301432908</sourcerecordid><originalsourceid>FETCH-LOGICAL-a303t-3451924cc48b6e3e27d250db1ecaa090b58a6b55a68da0c2db360d9f731aa1fe3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFavnnMUMXU_0-QoQW2hUsF68bLMbiZtSpKtuwnivzeS4s3TDC_POzAPIdeMzhjl7B5sgKaaZYaxLElPyIRlUsYpV_z0b5fynFyEsKc0EZyqCVl_oKurDuMNNocaOiyiHLxxbQQhguitA1PjXbSotrvo1X2hj15g22Ko-iZeDlQO3c4VOKQd-grqS3JWQh3w6jin5P3pcZMv4tX6eZk_rGIQVHSxkIplXForU5OgQD4vuKKFYWgBaEaNSiExSkGSFkAtL4xIaJGVc8EAWIliSm7GuwfvPnsMnW6qYLGuoUXXB80FZVLwjKYDOhtR610IHkt98FUD_lszqn_N6dGcPpobCrdjYcj13vW-HT75D_4B1zpv9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301432908</pqid></control><display><type>article</type><title>Zeolite-Templated Carbon as a Stable, High Power Magnesium-Ion Cathode Material</title><source>American Chemical Society Journals</source><creator>Dubey, Romain J.-C ; Colijn, Tess ; Aebli, Marcel ; Hanson, Erin E ; Widmer, Roland ; Kravchyk, Kostiantyn V ; Kovalenko, Maksym V ; Stadie, Nicholas P</creator><creatorcontrib>Dubey, Romain J.-C ; Colijn, Tess ; Aebli, Marcel ; Hanson, Erin E ; Widmer, Roland ; Kravchyk, Kostiantyn V ; Kovalenko, Maksym V ; Stadie, Nicholas P</creatorcontrib><description>One strategy to overcome the slow kinetics associated with electrochemical magnesium ion storage is to employ a permanently porous, capacitive cathode material together with magnesium metal as the anode. This strategy has begun to be employed, for example, using framework solids like Prussian blue analogues or porous carbons derived from metal–organic frameworks, but the cycling stability of an ordered, bottom-up synthesized, three-dimensional carbon framework toward magnesiation and demagnesiation in a shuttle-type battery remains unexplored. Zeolite-templated carbons (ZTCs) are a class of ordered porous carbonaceous framework materials with numerous superlative properties relevant to electrochemical energy storage. Herein, we report that ZTCs can serve as high-power cathode materials for magnesium-ion hybrid capacitors (MHCs), exhibiting high specific capacities (e.g., 113 mA h g–1 after 100 cycles) with an average discharge voltage of 1.44 V and exceptional capacity retention (e.g., 76% after 200 cycles). ZTC-based MHCs meet or exceed the gravimetric energy densities of state-of-the-art batteries functioning on the Mg2+ shuttle, while simultaneously displaying far superior rate capabilities (e.g., 834 W kg–1 at 600 mA g–1).</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b11968</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-10, Vol.11 (43), p.39902-39909</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a303t-3451924cc48b6e3e27d250db1ecaa090b58a6b55a68da0c2db360d9f731aa1fe3</citedby><cites>FETCH-LOGICAL-a303t-3451924cc48b6e3e27d250db1ecaa090b58a6b55a68da0c2db360d9f731aa1fe3</cites><orcidid>0000-0002-6396-8938 ; 0000-0001-6149-193X ; 0000-0002-1139-7846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b11968$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b11968$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Dubey, Romain J.-C</creatorcontrib><creatorcontrib>Colijn, Tess</creatorcontrib><creatorcontrib>Aebli, Marcel</creatorcontrib><creatorcontrib>Hanson, Erin E</creatorcontrib><creatorcontrib>Widmer, Roland</creatorcontrib><creatorcontrib>Kravchyk, Kostiantyn V</creatorcontrib><creatorcontrib>Kovalenko, Maksym V</creatorcontrib><creatorcontrib>Stadie, Nicholas P</creatorcontrib><title>Zeolite-Templated Carbon as a Stable, High Power Magnesium-Ion Cathode Material</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>One strategy to overcome the slow kinetics associated with electrochemical magnesium ion storage is to employ a permanently porous, capacitive cathode material together with magnesium metal as the anode. This strategy has begun to be employed, for example, using framework solids like Prussian blue analogues or porous carbons derived from metal–organic frameworks, but the cycling stability of an ordered, bottom-up synthesized, three-dimensional carbon framework toward magnesiation and demagnesiation in a shuttle-type battery remains unexplored. Zeolite-templated carbons (ZTCs) are a class of ordered porous carbonaceous framework materials with numerous superlative properties relevant to electrochemical energy storage. Herein, we report that ZTCs can serve as high-power cathode materials for magnesium-ion hybrid capacitors (MHCs), exhibiting high specific capacities (e.g., 113 mA h g–1 after 100 cycles) with an average discharge voltage of 1.44 V and exceptional capacity retention (e.g., 76% after 200 cycles). ZTC-based MHCs meet or exceed the gravimetric energy densities of state-of-the-art batteries functioning on the Mg2+ shuttle, while simultaneously displaying far superior rate capabilities (e.g., 834 W kg–1 at 600 mA g–1).</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFavnnMUMXU_0-QoQW2hUsF68bLMbiZtSpKtuwnivzeS4s3TDC_POzAPIdeMzhjl7B5sgKaaZYaxLElPyIRlUsYpV_z0b5fynFyEsKc0EZyqCVl_oKurDuMNNocaOiyiHLxxbQQhguitA1PjXbSotrvo1X2hj15g22Ko-iZeDlQO3c4VOKQd-grqS3JWQh3w6jin5P3pcZMv4tX6eZk_rGIQVHSxkIplXForU5OgQD4vuKKFYWgBaEaNSiExSkGSFkAtL4xIaJGVc8EAWIliSm7GuwfvPnsMnW6qYLGuoUXXB80FZVLwjKYDOhtR610IHkt98FUD_lszqn_N6dGcPpobCrdjYcj13vW-HT75D_4B1zpv9Q</recordid><startdate>20191030</startdate><enddate>20191030</enddate><creator>Dubey, Romain J.-C</creator><creator>Colijn, Tess</creator><creator>Aebli, Marcel</creator><creator>Hanson, Erin E</creator><creator>Widmer, Roland</creator><creator>Kravchyk, Kostiantyn V</creator><creator>Kovalenko, Maksym V</creator><creator>Stadie, Nicholas P</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6396-8938</orcidid><orcidid>https://orcid.org/0000-0001-6149-193X</orcidid><orcidid>https://orcid.org/0000-0002-1139-7846</orcidid></search><sort><creationdate>20191030</creationdate><title>Zeolite-Templated Carbon as a Stable, High Power Magnesium-Ion Cathode Material</title><author>Dubey, Romain J.-C ; Colijn, Tess ; Aebli, Marcel ; Hanson, Erin E ; Widmer, Roland ; Kravchyk, Kostiantyn V ; Kovalenko, Maksym V ; Stadie, Nicholas P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a303t-3451924cc48b6e3e27d250db1ecaa090b58a6b55a68da0c2db360d9f731aa1fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubey, Romain J.-C</creatorcontrib><creatorcontrib>Colijn, Tess</creatorcontrib><creatorcontrib>Aebli, Marcel</creatorcontrib><creatorcontrib>Hanson, Erin E</creatorcontrib><creatorcontrib>Widmer, Roland</creatorcontrib><creatorcontrib>Kravchyk, Kostiantyn V</creatorcontrib><creatorcontrib>Kovalenko, Maksym V</creatorcontrib><creatorcontrib>Stadie, Nicholas P</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubey, Romain J.-C</au><au>Colijn, Tess</au><au>Aebli, Marcel</au><au>Hanson, Erin E</au><au>Widmer, Roland</au><au>Kravchyk, Kostiantyn V</au><au>Kovalenko, Maksym V</au><au>Stadie, Nicholas P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zeolite-Templated Carbon as a Stable, High Power Magnesium-Ion Cathode Material</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-10-30</date><risdate>2019</risdate><volume>11</volume><issue>43</issue><spage>39902</spage><epage>39909</epage><pages>39902-39909</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>One strategy to overcome the slow kinetics associated with electrochemical magnesium ion storage is to employ a permanently porous, capacitive cathode material together with magnesium metal as the anode. This strategy has begun to be employed, for example, using framework solids like Prussian blue analogues or porous carbons derived from metal–organic frameworks, but the cycling stability of an ordered, bottom-up synthesized, three-dimensional carbon framework toward magnesiation and demagnesiation in a shuttle-type battery remains unexplored. Zeolite-templated carbons (ZTCs) are a class of ordered porous carbonaceous framework materials with numerous superlative properties relevant to electrochemical energy storage. Herein, we report that ZTCs can serve as high-power cathode materials for magnesium-ion hybrid capacitors (MHCs), exhibiting high specific capacities (e.g., 113 mA h g–1 after 100 cycles) with an average discharge voltage of 1.44 V and exceptional capacity retention (e.g., 76% after 200 cycles). ZTC-based MHCs meet or exceed the gravimetric energy densities of state-of-the-art batteries functioning on the Mg2+ shuttle, while simultaneously displaying far superior rate capabilities (e.g., 834 W kg–1 at 600 mA g–1).</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.9b11968</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6396-8938</orcidid><orcidid>https://orcid.org/0000-0001-6149-193X</orcidid><orcidid>https://orcid.org/0000-0002-1139-7846</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-10, Vol.11 (43), p.39902-39909
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2301432908
source American Chemical Society Journals
title Zeolite-Templated Carbon as a Stable, High Power Magnesium-Ion Cathode Material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zeolite-Templated%20Carbon%20as%20a%20Stable,%20High%20Power%20Magnesium-Ion%20Cathode%20Material&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Dubey,%20Romain%20J.-C&rft.date=2019-10-30&rft.volume=11&rft.issue=43&rft.spage=39902&rft.epage=39909&rft.pages=39902-39909&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b11968&rft_dat=%3Cproquest_cross%3E2301432908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301432908&rft_id=info:pmid/&rfr_iscdi=true