In vitro and in vivo osteogenic potential of niobium‐doped 45S5 bioactive glass: A comparative study
In vitro and in vivo experiments were undertaken to evaluate the solubility, apatite‐forming ability, cytocompatibility, osteostimulation, and osteoinduction for a series of Nb‐containing bioactive glass (BGNb) derived from composition of 45S5 Bioglass. Inductively coupled plasma optical emission sp...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2020-05, Vol.108 (4), p.1372-1387 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1387 |
---|---|
container_issue | 4 |
container_start_page | 1372 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 108 |
creator | Lopes, João H. Souza, Lucas P. Domingues, Juliana A. Ferreira, Filipe V. Alencar Hausen, Moema Camilli, José A. Martin, Richard A. Rezende Duek, Eliana A. Mazali, Italo O. Bertran, Celso A. |
description | In vitro and in vivo experiments were undertaken to evaluate the solubility, apatite‐forming ability, cytocompatibility, osteostimulation, and osteoinduction for a series of Nb‐containing bioactive glass (BGNb) derived from composition of 45S5 Bioglass. Inductively coupled plasma optical emission spectrometry (ICP‐OES) revealed that the rate at which Na, Ca, Si, P, and Nb species are leached from the glass decrease with the increasing concentration of the niobium oxide. The formation of apatite as a function of time in simulated body fluid was monitored by 31P Magic Angle Spinning (MAS) Nuclear magnetic resonance spectroscopy. Results showed that the bioactive glasses: Bioglass 45S5 (BG45S5) and 1 mol%‐Nb‐containing‐bioactive glass (BGSN1) were able to grow apatite layer on their surfaces within 3 h, while glasses with higher concentrations of Nb2O5 (2.5 and 5 mol%) took at least 12 h. Nb‐substituted glasses were shown to be compatible with bone marrow‐derived mesenchymal stem cells (BMMSCs). Moreover, the bioactive glass with 1 mol% Nb2O5 significantly enhanced cell proliferation after 4 days of treatment. Concentrations of 1 and 2.5 mol% Nb2O5 stimulated osteogenic differentiation of BMMSCs after 21 days of treatment. For the in vivo experiments, trial glass rods were implanted into circular defects in rat tibia in order to evaluate their osteoconductivity and osteostimulation. Two morphometric parameters were analyzed: (a) thickness of new‐formed bone layer and (b) area of new‐formed subperiostal bone. Results showed that BGNb bioactive glass is osteoconductive and osteostimulative. Therefore, these results indicate that Nb‐substituted glass is suitable for biomedical applications. |
doi_str_mv | 10.1002/jbm.b.34486 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2301430482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2301430482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4396-60e2af75bd2adc31dc6df39c6fb49d47ac94265f92b0f7ae83b11f465a0d334e3</originalsourceid><addsrcrecordid>eNp90LtOwzAUBmALgaBcJnZkiQUJtfjehK1FXAViAGbLV-QqiUOcFHXjEXhGnoRAoQMDk4-PPv06-gHYx2iEESInM12O9Igylok1MMCckyHLM7y-msd0C2ynNOuxQJxugi2KeUYzjAbAX1dwHtomQlVZGL4-8whjal18dlUwsI6tq9qgChg9rELUoSs_3t5trJ2FjD9wqENUpg1zB58LldIpnEATy1o16nuZ2s4udsGGV0Vyez_vDni6OH88uxre3l9en01uh4bRXAwFckT5MdeWKGsotkZYT3MjvGa5ZWNlckYE9znRyI-Vy6jG2DPBFbKUMkd3wNEyt27iS-dSK8uQjCsKVbnYJUkowowilpGeHv6hs9g1VX9dr7KMEMS46NXxUpkmptQ4L-smlKpZSIzkV_2yr19q-V1_rw9-MjtdOruyv333gCzBayjc4r8seTO9my5TPwF-7ZD9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388220456</pqid></control><display><type>article</type><title>In vitro and in vivo osteogenic potential of niobium‐doped 45S5 bioactive glass: A comparative study</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lopes, João H. ; Souza, Lucas P. ; Domingues, Juliana A. ; Ferreira, Filipe V. ; Alencar Hausen, Moema ; Camilli, José A. ; Martin, Richard A. ; Rezende Duek, Eliana A. ; Mazali, Italo O. ; Bertran, Celso A.</creator><creatorcontrib>Lopes, João H. ; Souza, Lucas P. ; Domingues, Juliana A. ; Ferreira, Filipe V. ; Alencar Hausen, Moema ; Camilli, José A. ; Martin, Richard A. ; Rezende Duek, Eliana A. ; Mazali, Italo O. ; Bertran, Celso A.</creatorcontrib><description>In vitro and in vivo experiments were undertaken to evaluate the solubility, apatite‐forming ability, cytocompatibility, osteostimulation, and osteoinduction for a series of Nb‐containing bioactive glass (BGNb) derived from composition of 45S5 Bioglass. Inductively coupled plasma optical emission spectrometry (ICP‐OES) revealed that the rate at which Na, Ca, Si, P, and Nb species are leached from the glass decrease with the increasing concentration of the niobium oxide. The formation of apatite as a function of time in simulated body fluid was monitored by 31P Magic Angle Spinning (MAS) Nuclear magnetic resonance spectroscopy. Results showed that the bioactive glasses: Bioglass 45S5 (BG45S5) and 1 mol%‐Nb‐containing‐bioactive glass (BGSN1) were able to grow apatite layer on their surfaces within 3 h, while glasses with higher concentrations of Nb2O5 (2.5 and 5 mol%) took at least 12 h. Nb‐substituted glasses were shown to be compatible with bone marrow‐derived mesenchymal stem cells (BMMSCs). Moreover, the bioactive glass with 1 mol% Nb2O5 significantly enhanced cell proliferation after 4 days of treatment. Concentrations of 1 and 2.5 mol% Nb2O5 stimulated osteogenic differentiation of BMMSCs after 21 days of treatment. For the in vivo experiments, trial glass rods were implanted into circular defects in rat tibia in order to evaluate their osteoconductivity and osteostimulation. Two morphometric parameters were analyzed: (a) thickness of new‐formed bone layer and (b) area of new‐formed subperiostal bone. Results showed that BGNb bioactive glass is osteoconductive and osteostimulative. Therefore, these results indicate that Nb‐substituted glass is suitable for biomedical applications.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34486</identifier><identifier>PMID: 31583810</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Apatite ; bioactive glass ; Biocompatibility ; Bioglass ; Biological activity ; Biomedical materials ; Body fluids ; Bone marrow ; bone regeneration ; Cell proliferation ; Comparative studies ; Differentiation (biology) ; In vitro methods and tests ; In vivo methods and tests ; Inductively coupled plasma ; Magnetic resonance spectroscopy ; Materials research ; Materials science ; Mesenchyme ; Niobium ; Niobium oxides ; NMR ; Nuclear magnetic resonance ; Optical emission spectroscopy ; Osteoconduction ; osteoinduction ; osteostimulation ; Spectrometry ; Stem cell transplantation ; Stem cells ; Substitutes ; Surgical implants ; Tibia</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2020-05, Vol.108 (4), p.1372-1387</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4396-60e2af75bd2adc31dc6df39c6fb49d47ac94265f92b0f7ae83b11f465a0d334e3</citedby><cites>FETCH-LOGICAL-c4396-60e2af75bd2adc31dc6df39c6fb49d47ac94265f92b0f7ae83b11f465a0d334e3</cites><orcidid>0000-0001-8494-1868 ; 0000-0001-6872-0299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.34486$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.34486$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31583810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopes, João H.</creatorcontrib><creatorcontrib>Souza, Lucas P.</creatorcontrib><creatorcontrib>Domingues, Juliana A.</creatorcontrib><creatorcontrib>Ferreira, Filipe V.</creatorcontrib><creatorcontrib>Alencar Hausen, Moema</creatorcontrib><creatorcontrib>Camilli, José A.</creatorcontrib><creatorcontrib>Martin, Richard A.</creatorcontrib><creatorcontrib>Rezende Duek, Eliana A.</creatorcontrib><creatorcontrib>Mazali, Italo O.</creatorcontrib><creatorcontrib>Bertran, Celso A.</creatorcontrib><title>In vitro and in vivo osteogenic potential of niobium‐doped 45S5 bioactive glass: A comparative study</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>In vitro and in vivo experiments were undertaken to evaluate the solubility, apatite‐forming ability, cytocompatibility, osteostimulation, and osteoinduction for a series of Nb‐containing bioactive glass (BGNb) derived from composition of 45S5 Bioglass. Inductively coupled plasma optical emission spectrometry (ICP‐OES) revealed that the rate at which Na, Ca, Si, P, and Nb species are leached from the glass decrease with the increasing concentration of the niobium oxide. The formation of apatite as a function of time in simulated body fluid was monitored by 31P Magic Angle Spinning (MAS) Nuclear magnetic resonance spectroscopy. Results showed that the bioactive glasses: Bioglass 45S5 (BG45S5) and 1 mol%‐Nb‐containing‐bioactive glass (BGSN1) were able to grow apatite layer on their surfaces within 3 h, while glasses with higher concentrations of Nb2O5 (2.5 and 5 mol%) took at least 12 h. Nb‐substituted glasses were shown to be compatible with bone marrow‐derived mesenchymal stem cells (BMMSCs). Moreover, the bioactive glass with 1 mol% Nb2O5 significantly enhanced cell proliferation after 4 days of treatment. Concentrations of 1 and 2.5 mol% Nb2O5 stimulated osteogenic differentiation of BMMSCs after 21 days of treatment. For the in vivo experiments, trial glass rods were implanted into circular defects in rat tibia in order to evaluate their osteoconductivity and osteostimulation. Two morphometric parameters were analyzed: (a) thickness of new‐formed bone layer and (b) area of new‐formed subperiostal bone. Results showed that BGNb bioactive glass is osteoconductive and osteostimulative. Therefore, these results indicate that Nb‐substituted glass is suitable for biomedical applications.</description><subject>Apatite</subject><subject>bioactive glass</subject><subject>Biocompatibility</subject><subject>Bioglass</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>Bone marrow</subject><subject>bone regeneration</subject><subject>Cell proliferation</subject><subject>Comparative studies</subject><subject>Differentiation (biology)</subject><subject>In vitro methods and tests</subject><subject>In vivo methods and tests</subject><subject>Inductively coupled plasma</subject><subject>Magnetic resonance spectroscopy</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Mesenchyme</subject><subject>Niobium</subject><subject>Niobium oxides</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optical emission spectroscopy</subject><subject>Osteoconduction</subject><subject>osteoinduction</subject><subject>osteostimulation</subject><subject>Spectrometry</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Substitutes</subject><subject>Surgical implants</subject><subject>Tibia</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90LtOwzAUBmALgaBcJnZkiQUJtfjehK1FXAViAGbLV-QqiUOcFHXjEXhGnoRAoQMDk4-PPv06-gHYx2iEESInM12O9Igylok1MMCckyHLM7y-msd0C2ynNOuxQJxugi2KeUYzjAbAX1dwHtomQlVZGL4-8whjal18dlUwsI6tq9qgChg9rELUoSs_3t5trJ2FjD9wqENUpg1zB58LldIpnEATy1o16nuZ2s4udsGGV0Vyez_vDni6OH88uxre3l9en01uh4bRXAwFckT5MdeWKGsotkZYT3MjvGa5ZWNlckYE9znRyI-Vy6jG2DPBFbKUMkd3wNEyt27iS-dSK8uQjCsKVbnYJUkowowilpGeHv6hs9g1VX9dr7KMEMS46NXxUpkmptQ4L-smlKpZSIzkV_2yr19q-V1_rw9-MjtdOruyv333gCzBayjc4r8seTO9my5TPwF-7ZD9</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Lopes, João H.</creator><creator>Souza, Lucas P.</creator><creator>Domingues, Juliana A.</creator><creator>Ferreira, Filipe V.</creator><creator>Alencar Hausen, Moema</creator><creator>Camilli, José A.</creator><creator>Martin, Richard A.</creator><creator>Rezende Duek, Eliana A.</creator><creator>Mazali, Italo O.</creator><creator>Bertran, Celso A.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8494-1868</orcidid><orcidid>https://orcid.org/0000-0001-6872-0299</orcidid></search><sort><creationdate>202005</creationdate><title>In vitro and in vivo osteogenic potential of niobium‐doped 45S5 bioactive glass: A comparative study</title><author>Lopes, João H. ; Souza, Lucas P. ; Domingues, Juliana A. ; Ferreira, Filipe V. ; Alencar Hausen, Moema ; Camilli, José A. ; Martin, Richard A. ; Rezende Duek, Eliana A. ; Mazali, Italo O. ; Bertran, Celso A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4396-60e2af75bd2adc31dc6df39c6fb49d47ac94265f92b0f7ae83b11f465a0d334e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apatite</topic><topic>bioactive glass</topic><topic>Biocompatibility</topic><topic>Bioglass</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>Bone marrow</topic><topic>bone regeneration</topic><topic>Cell proliferation</topic><topic>Comparative studies</topic><topic>Differentiation (biology)</topic><topic>In vitro methods and tests</topic><topic>In vivo methods and tests</topic><topic>Inductively coupled plasma</topic><topic>Magnetic resonance spectroscopy</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Mesenchyme</topic><topic>Niobium</topic><topic>Niobium oxides</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optical emission spectroscopy</topic><topic>Osteoconduction</topic><topic>osteoinduction</topic><topic>osteostimulation</topic><topic>Spectrometry</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Substitutes</topic><topic>Surgical implants</topic><topic>Tibia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes, João H.</creatorcontrib><creatorcontrib>Souza, Lucas P.</creatorcontrib><creatorcontrib>Domingues, Juliana A.</creatorcontrib><creatorcontrib>Ferreira, Filipe V.</creatorcontrib><creatorcontrib>Alencar Hausen, Moema</creatorcontrib><creatorcontrib>Camilli, José A.</creatorcontrib><creatorcontrib>Martin, Richard A.</creatorcontrib><creatorcontrib>Rezende Duek, Eliana A.</creatorcontrib><creatorcontrib>Mazali, Italo O.</creatorcontrib><creatorcontrib>Bertran, Celso A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes, João H.</au><au>Souza, Lucas P.</au><au>Domingues, Juliana A.</au><au>Ferreira, Filipe V.</au><au>Alencar Hausen, Moema</au><au>Camilli, José A.</au><au>Martin, Richard A.</au><au>Rezende Duek, Eliana A.</au><au>Mazali, Italo O.</au><au>Bertran, Celso A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro and in vivo osteogenic potential of niobium‐doped 45S5 bioactive glass: A comparative study</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2020-05</date><risdate>2020</risdate><volume>108</volume><issue>4</issue><spage>1372</spage><epage>1387</epage><pages>1372-1387</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>In vitro and in vivo experiments were undertaken to evaluate the solubility, apatite‐forming ability, cytocompatibility, osteostimulation, and osteoinduction for a series of Nb‐containing bioactive glass (BGNb) derived from composition of 45S5 Bioglass. Inductively coupled plasma optical emission spectrometry (ICP‐OES) revealed that the rate at which Na, Ca, Si, P, and Nb species are leached from the glass decrease with the increasing concentration of the niobium oxide. The formation of apatite as a function of time in simulated body fluid was monitored by 31P Magic Angle Spinning (MAS) Nuclear magnetic resonance spectroscopy. Results showed that the bioactive glasses: Bioglass 45S5 (BG45S5) and 1 mol%‐Nb‐containing‐bioactive glass (BGSN1) were able to grow apatite layer on their surfaces within 3 h, while glasses with higher concentrations of Nb2O5 (2.5 and 5 mol%) took at least 12 h. Nb‐substituted glasses were shown to be compatible with bone marrow‐derived mesenchymal stem cells (BMMSCs). Moreover, the bioactive glass with 1 mol% Nb2O5 significantly enhanced cell proliferation after 4 days of treatment. Concentrations of 1 and 2.5 mol% Nb2O5 stimulated osteogenic differentiation of BMMSCs after 21 days of treatment. For the in vivo experiments, trial glass rods were implanted into circular defects in rat tibia in order to evaluate their osteoconductivity and osteostimulation. Two morphometric parameters were analyzed: (a) thickness of new‐formed bone layer and (b) area of new‐formed subperiostal bone. Results showed that BGNb bioactive glass is osteoconductive and osteostimulative. Therefore, these results indicate that Nb‐substituted glass is suitable for biomedical applications.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31583810</pmid><doi>10.1002/jbm.b.34486</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8494-1868</orcidid><orcidid>https://orcid.org/0000-0001-6872-0299</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2020-05, Vol.108 (4), p.1372-1387 |
issn | 1552-4973 1552-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_2301430482 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Apatite bioactive glass Biocompatibility Bioglass Biological activity Biomedical materials Body fluids Bone marrow bone regeneration Cell proliferation Comparative studies Differentiation (biology) In vitro methods and tests In vivo methods and tests Inductively coupled plasma Magnetic resonance spectroscopy Materials research Materials science Mesenchyme Niobium Niobium oxides NMR Nuclear magnetic resonance Optical emission spectroscopy Osteoconduction osteoinduction osteostimulation Spectrometry Stem cell transplantation Stem cells Substitutes Surgical implants Tibia |
title | In vitro and in vivo osteogenic potential of niobium‐doped 45S5 bioactive glass: A comparative study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20and%20in%20vivo%20osteogenic%20potential%20of%20niobium%E2%80%90doped%2045S5%20bioactive%20glass:%20A%20comparative%20study&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Lopes,%20Jo%C3%A3o%20H.&rft.date=2020-05&rft.volume=108&rft.issue=4&rft.spage=1372&rft.epage=1387&rft.pages=1372-1387&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34486&rft_dat=%3Cproquest_cross%3E2301430482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388220456&rft_id=info:pmid/31583810&rfr_iscdi=true |