Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies
BACKGROUND Cropping practices focusing on agronomic water use efficiency and their impact on quality parameters must be investigated to overcome constraints affecting olive groves. We evaluated the response of olive trees (Olea europaea, cv. ‘Cobrançosa’) to different water regimes: full irrigation...
Gespeichert in:
Veröffentlicht in: | Journal of the science of food and agriculture 2020-01, Vol.100 (2), p.682-694 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 694 |
---|---|
container_issue | 2 |
container_start_page | 682 |
container_title | Journal of the science of food and agriculture |
container_volume | 100 |
creator | Gonçalves, Alexandre Silva, Ermelinda Brito, Cátia Martins, Sandra Pinto, Luís Dinis, Lia‐Tânia Luzio, Ana Martins‐Gomes, Carlos Fernandes‐Silva, Anabela Ribeiro, Carlos Rodrigues, M. Ângelo Moutinho‐Pereira, José Nunes, Fernando M. Correia, Carlos M. |
description | BACKGROUND
Cropping practices focusing on agronomic water use efficiency and their impact on quality parameters must be investigated to overcome constraints affecting olive groves. We evaluated the response of olive trees (Olea europaea, cv. ‘Cobrançosa’) to different water regimes: full irrigation (FI, 100% crop evapotranspiration (ETc)), and three deficit irrigation strategies (DIS) (regulated (RDI, irrigated with 80% of crop evapotranspiration (ETc) in phases I and III of fruit growth and 10% of ETc in the pit hardening stage), and two continuous sustained strategies (SDI) – a conventional SDI (27.5% of ETc), and low‐frequency irrigation adopted by the farmer (SDIAF, 21.2% of ETc).
RESULTS
The effects of water regimes on the plant water status, photosynthetic performance, metabolite fluctuations and fruit quality parameters were evaluated. All DIS treatments enhanced leaf tissue density; RDI and SDI generally did not affect leaf water status and maintained photosynthetic machinery working properly, and the SDIAF treatment impaired olive tree physiological indicators. The DIS treatments maintained the levels of primary metabolites in leaves, but SDIAF plants showed signs of oxidative stress. Moreover, DIS treatments led to changes in the secondary metabolism, both in leaves and in fruits, with increased total phenolic compounds, ortho‐diphenols, and flavonoid concentration, and higher total antioxidant capacity, as well higher oil content. Phenolic profiles showed the relevance of an early harvest in order to obtain higher oleuropein levels with associated higher health benefits.
CONCLUSION
Adequate DIS are essential for sustainable olive growing, as they enhance the competitiveness of the sector in terms of olive production and associated quality parameters. © 2019 Society of Chemical Industry |
doi_str_mv | 10.1002/jsfa.10064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2301428840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2325674813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4194-2f0374d33a21df6d60927af181a9ff1b9487b98102817bbd5fa4acf22a2e85263</originalsourceid><addsrcrecordid>eNp90ctKxDAUBuAgio6XjQ8gATciVE_StE2XIl4RXKjrkjYnY4a2GZNW6dubcdSFC1cJ5Ds_4fyEHDI4YwD8fBGMWt1ysUFmDMoiAWCwSWbxkScZE3yH7IawAICyzPNtspOyTKYF8Bl5e2ztO9LBI9Ll6xSsa918oqrXtHnFzjaqpY3rli7YwbqeOkONH-0QqPJIO6fHVg2oaT1RbY1Bj_1ANRrb2IFa7-1cfc2FwUc3txj2yZZRbcCD73OPvFxfPV_eJg-PN3eXFw9JI1gpEm4gLYROU8WZNrnOoeSFMkwyVRrD6lLIoi4lAy5ZUdc6M0qoxnCuOMqM5-keOVnnLr17GzEMVWdDg22renRjqHgKcTNSCoj0-A9duNH38XdR8SwvhGRpVKdr1XgXgkdTLb3tlJ8qBtWqiGpVRPVVRMRH35Fj3aH-pT-bj4CtwYdtcfonqrp_ur5Yh34CO5-T2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325674813</pqid></control><display><type>article</type><title>Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gonçalves, Alexandre ; Silva, Ermelinda ; Brito, Cátia ; Martins, Sandra ; Pinto, Luís ; Dinis, Lia‐Tânia ; Luzio, Ana ; Martins‐Gomes, Carlos ; Fernandes‐Silva, Anabela ; Ribeiro, Carlos ; Rodrigues, M. Ângelo ; Moutinho‐Pereira, José ; Nunes, Fernando M. ; Correia, Carlos M.</creator><creatorcontrib>Gonçalves, Alexandre ; Silva, Ermelinda ; Brito, Cátia ; Martins, Sandra ; Pinto, Luís ; Dinis, Lia‐Tânia ; Luzio, Ana ; Martins‐Gomes, Carlos ; Fernandes‐Silva, Anabela ; Ribeiro, Carlos ; Rodrigues, M. Ângelo ; Moutinho‐Pereira, José ; Nunes, Fernando M. ; Correia, Carlos M.</creatorcontrib><description>BACKGROUND
Cropping practices focusing on agronomic water use efficiency and their impact on quality parameters must be investigated to overcome constraints affecting olive groves. We evaluated the response of olive trees (Olea europaea, cv. ‘Cobrançosa’) to different water regimes: full irrigation (FI, 100% crop evapotranspiration (ETc)), and three deficit irrigation strategies (DIS) (regulated (RDI, irrigated with 80% of crop evapotranspiration (ETc) in phases I and III of fruit growth and 10% of ETc in the pit hardening stage), and two continuous sustained strategies (SDI) – a conventional SDI (27.5% of ETc), and low‐frequency irrigation adopted by the farmer (SDIAF, 21.2% of ETc).
RESULTS
The effects of water regimes on the plant water status, photosynthetic performance, metabolite fluctuations and fruit quality parameters were evaluated. All DIS treatments enhanced leaf tissue density; RDI and SDI generally did not affect leaf water status and maintained photosynthetic machinery working properly, and the SDIAF treatment impaired olive tree physiological indicators. The DIS treatments maintained the levels of primary metabolites in leaves, but SDIAF plants showed signs of oxidative stress. Moreover, DIS treatments led to changes in the secondary metabolism, both in leaves and in fruits, with increased total phenolic compounds, ortho‐diphenols, and flavonoid concentration, and higher total antioxidant capacity, as well higher oil content. Phenolic profiles showed the relevance of an early harvest in order to obtain higher oleuropein levels with associated higher health benefits.
CONCLUSION
Adequate DIS are essential for sustainable olive growing, as they enhance the competitiveness of the sector in terms of olive production and associated quality parameters. © 2019 Society of Chemical Industry</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.10064</identifier><identifier>PMID: 31583702</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Agricultural Irrigation - methods ; Agricultural practices ; Agronomy ; Antioxidants ; Chemical composition ; Competitiveness ; Diphenols ; ecophysiology ; Evapotranspiration ; Flavonoids ; Fruit - chemistry ; Fruit - growth & development ; Fruit - metabolism ; fruit physicochemical properties ; Fruit trees ; Fruits ; Irrigation ; irrigation regime ; Irrigation water ; Leaves ; Metabolism ; Metabolites ; Olea - chemistry ; Olea - growth & development ; Olea - metabolism ; Olea europaea ; Oleuropein ; Organic chemistry ; Oxidative Stress ; Parameters ; Phenolic compounds ; Phenols ; Phenols - chemistry ; Phenols - metabolism ; Photosynthesis ; Plant Extracts - chemistry ; Plant Extracts - metabolism ; Plant Leaves - growth & development ; Plant Leaves - metabolism ; Plant tissues ; Trees ; Water - analysis ; Water - metabolism ; Water regimes ; Water use ; Water use efficiency</subject><ispartof>Journal of the science of food and agriculture, 2020-01, Vol.100 (2), p.682-694</ispartof><rights>2019 Society of Chemical Industry</rights><rights>2019 Society of Chemical Industry.</rights><rights>Copyright © 2020 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4194-2f0374d33a21df6d60927af181a9ff1b9487b98102817bbd5fa4acf22a2e85263</citedby><cites>FETCH-LOGICAL-c4194-2f0374d33a21df6d60927af181a9ff1b9487b98102817bbd5fa4acf22a2e85263</cites><orcidid>0000-0003-2482-7873 ; 0000-0003-2370-6084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsfa.10064$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsfa.10064$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31583702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gonçalves, Alexandre</creatorcontrib><creatorcontrib>Silva, Ermelinda</creatorcontrib><creatorcontrib>Brito, Cátia</creatorcontrib><creatorcontrib>Martins, Sandra</creatorcontrib><creatorcontrib>Pinto, Luís</creatorcontrib><creatorcontrib>Dinis, Lia‐Tânia</creatorcontrib><creatorcontrib>Luzio, Ana</creatorcontrib><creatorcontrib>Martins‐Gomes, Carlos</creatorcontrib><creatorcontrib>Fernandes‐Silva, Anabela</creatorcontrib><creatorcontrib>Ribeiro, Carlos</creatorcontrib><creatorcontrib>Rodrigues, M. Ângelo</creatorcontrib><creatorcontrib>Moutinho‐Pereira, José</creatorcontrib><creatorcontrib>Nunes, Fernando M.</creatorcontrib><creatorcontrib>Correia, Carlos M.</creatorcontrib><title>Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND
Cropping practices focusing on agronomic water use efficiency and their impact on quality parameters must be investigated to overcome constraints affecting olive groves. We evaluated the response of olive trees (Olea europaea, cv. ‘Cobrançosa’) to different water regimes: full irrigation (FI, 100% crop evapotranspiration (ETc)), and three deficit irrigation strategies (DIS) (regulated (RDI, irrigated with 80% of crop evapotranspiration (ETc) in phases I and III of fruit growth and 10% of ETc in the pit hardening stage), and two continuous sustained strategies (SDI) – a conventional SDI (27.5% of ETc), and low‐frequency irrigation adopted by the farmer (SDIAF, 21.2% of ETc).
RESULTS
The effects of water regimes on the plant water status, photosynthetic performance, metabolite fluctuations and fruit quality parameters were evaluated. All DIS treatments enhanced leaf tissue density; RDI and SDI generally did not affect leaf water status and maintained photosynthetic machinery working properly, and the SDIAF treatment impaired olive tree physiological indicators. The DIS treatments maintained the levels of primary metabolites in leaves, but SDIAF plants showed signs of oxidative stress. Moreover, DIS treatments led to changes in the secondary metabolism, both in leaves and in fruits, with increased total phenolic compounds, ortho‐diphenols, and flavonoid concentration, and higher total antioxidant capacity, as well higher oil content. Phenolic profiles showed the relevance of an early harvest in order to obtain higher oleuropein levels with associated higher health benefits.
CONCLUSION
Adequate DIS are essential for sustainable olive growing, as they enhance the competitiveness of the sector in terms of olive production and associated quality parameters. © 2019 Society of Chemical Industry</description><subject>Agricultural Irrigation - methods</subject><subject>Agricultural practices</subject><subject>Agronomy</subject><subject>Antioxidants</subject><subject>Chemical composition</subject><subject>Competitiveness</subject><subject>Diphenols</subject><subject>ecophysiology</subject><subject>Evapotranspiration</subject><subject>Flavonoids</subject><subject>Fruit - chemistry</subject><subject>Fruit - growth & development</subject><subject>Fruit - metabolism</subject><subject>fruit physicochemical properties</subject><subject>Fruit trees</subject><subject>Fruits</subject><subject>Irrigation</subject><subject>irrigation regime</subject><subject>Irrigation water</subject><subject>Leaves</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Olea - chemistry</subject><subject>Olea - growth & development</subject><subject>Olea - metabolism</subject><subject>Olea europaea</subject><subject>Oleuropein</subject><subject>Organic chemistry</subject><subject>Oxidative Stress</subject><subject>Parameters</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Phenols - chemistry</subject><subject>Phenols - metabolism</subject><subject>Photosynthesis</subject><subject>Plant Extracts - chemistry</subject><subject>Plant Extracts - metabolism</subject><subject>Plant Leaves - growth & development</subject><subject>Plant Leaves - metabolism</subject><subject>Plant tissues</subject><subject>Trees</subject><subject>Water - analysis</subject><subject>Water - metabolism</subject><subject>Water regimes</subject><subject>Water use</subject><subject>Water use efficiency</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90ctKxDAUBuAgio6XjQ8gATciVE_StE2XIl4RXKjrkjYnY4a2GZNW6dubcdSFC1cJ5Ds_4fyEHDI4YwD8fBGMWt1ysUFmDMoiAWCwSWbxkScZE3yH7IawAICyzPNtspOyTKYF8Bl5e2ztO9LBI9Ll6xSsa918oqrXtHnFzjaqpY3rli7YwbqeOkONH-0QqPJIO6fHVg2oaT1RbY1Bj_1ANRrb2IFa7-1cfc2FwUc3txj2yZZRbcCD73OPvFxfPV_eJg-PN3eXFw9JI1gpEm4gLYROU8WZNrnOoeSFMkwyVRrD6lLIoi4lAy5ZUdc6M0qoxnCuOMqM5-keOVnnLr17GzEMVWdDg22renRjqHgKcTNSCoj0-A9duNH38XdR8SwvhGRpVKdr1XgXgkdTLb3tlJ8qBtWqiGpVRPVVRMRH35Fj3aH-pT-bj4CtwYdtcfonqrp_ur5Yh34CO5-T2Q</recordid><startdate>20200130</startdate><enddate>20200130</enddate><creator>Gonçalves, Alexandre</creator><creator>Silva, Ermelinda</creator><creator>Brito, Cátia</creator><creator>Martins, Sandra</creator><creator>Pinto, Luís</creator><creator>Dinis, Lia‐Tânia</creator><creator>Luzio, Ana</creator><creator>Martins‐Gomes, Carlos</creator><creator>Fernandes‐Silva, Anabela</creator><creator>Ribeiro, Carlos</creator><creator>Rodrigues, M. Ângelo</creator><creator>Moutinho‐Pereira, José</creator><creator>Nunes, Fernando M.</creator><creator>Correia, Carlos M.</creator><general>John Wiley & Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2482-7873</orcidid><orcidid>https://orcid.org/0000-0003-2370-6084</orcidid></search><sort><creationdate>20200130</creationdate><title>Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies</title><author>Gonçalves, Alexandre ; Silva, Ermelinda ; Brito, Cátia ; Martins, Sandra ; Pinto, Luís ; Dinis, Lia‐Tânia ; Luzio, Ana ; Martins‐Gomes, Carlos ; Fernandes‐Silva, Anabela ; Ribeiro, Carlos ; Rodrigues, M. Ângelo ; Moutinho‐Pereira, José ; Nunes, Fernando M. ; Correia, Carlos M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4194-2f0374d33a21df6d60927af181a9ff1b9487b98102817bbd5fa4acf22a2e85263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural Irrigation - methods</topic><topic>Agricultural practices</topic><topic>Agronomy</topic><topic>Antioxidants</topic><topic>Chemical composition</topic><topic>Competitiveness</topic><topic>Diphenols</topic><topic>ecophysiology</topic><topic>Evapotranspiration</topic><topic>Flavonoids</topic><topic>Fruit - chemistry</topic><topic>Fruit - growth & development</topic><topic>Fruit - metabolism</topic><topic>fruit physicochemical properties</topic><topic>Fruit trees</topic><topic>Fruits</topic><topic>Irrigation</topic><topic>irrigation regime</topic><topic>Irrigation water</topic><topic>Leaves</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Olea - chemistry</topic><topic>Olea - growth & development</topic><topic>Olea - metabolism</topic><topic>Olea europaea</topic><topic>Oleuropein</topic><topic>Organic chemistry</topic><topic>Oxidative Stress</topic><topic>Parameters</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Phenols - chemistry</topic><topic>Phenols - metabolism</topic><topic>Photosynthesis</topic><topic>Plant Extracts - chemistry</topic><topic>Plant Extracts - metabolism</topic><topic>Plant Leaves - growth & development</topic><topic>Plant Leaves - metabolism</topic><topic>Plant tissues</topic><topic>Trees</topic><topic>Water - analysis</topic><topic>Water - metabolism</topic><topic>Water regimes</topic><topic>Water use</topic><topic>Water use efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonçalves, Alexandre</creatorcontrib><creatorcontrib>Silva, Ermelinda</creatorcontrib><creatorcontrib>Brito, Cátia</creatorcontrib><creatorcontrib>Martins, Sandra</creatorcontrib><creatorcontrib>Pinto, Luís</creatorcontrib><creatorcontrib>Dinis, Lia‐Tânia</creatorcontrib><creatorcontrib>Luzio, Ana</creatorcontrib><creatorcontrib>Martins‐Gomes, Carlos</creatorcontrib><creatorcontrib>Fernandes‐Silva, Anabela</creatorcontrib><creatorcontrib>Ribeiro, Carlos</creatorcontrib><creatorcontrib>Rodrigues, M. Ângelo</creatorcontrib><creatorcontrib>Moutinho‐Pereira, José</creatorcontrib><creatorcontrib>Nunes, Fernando M.</creatorcontrib><creatorcontrib>Correia, Carlos M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonçalves, Alexandre</au><au>Silva, Ermelinda</au><au>Brito, Cátia</au><au>Martins, Sandra</au><au>Pinto, Luís</au><au>Dinis, Lia‐Tânia</au><au>Luzio, Ana</au><au>Martins‐Gomes, Carlos</au><au>Fernandes‐Silva, Anabela</au><au>Ribeiro, Carlos</au><au>Rodrigues, M. Ângelo</au><au>Moutinho‐Pereira, José</au><au>Nunes, Fernando M.</au><au>Correia, Carlos M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2020-01-30</date><risdate>2020</risdate><volume>100</volume><issue>2</issue><spage>682</spage><epage>694</epage><pages>682-694</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND
Cropping practices focusing on agronomic water use efficiency and their impact on quality parameters must be investigated to overcome constraints affecting olive groves. We evaluated the response of olive trees (Olea europaea, cv. ‘Cobrançosa’) to different water regimes: full irrigation (FI, 100% crop evapotranspiration (ETc)), and three deficit irrigation strategies (DIS) (regulated (RDI, irrigated with 80% of crop evapotranspiration (ETc) in phases I and III of fruit growth and 10% of ETc in the pit hardening stage), and two continuous sustained strategies (SDI) – a conventional SDI (27.5% of ETc), and low‐frequency irrigation adopted by the farmer (SDIAF, 21.2% of ETc).
RESULTS
The effects of water regimes on the plant water status, photosynthetic performance, metabolite fluctuations and fruit quality parameters were evaluated. All DIS treatments enhanced leaf tissue density; RDI and SDI generally did not affect leaf water status and maintained photosynthetic machinery working properly, and the SDIAF treatment impaired olive tree physiological indicators. The DIS treatments maintained the levels of primary metabolites in leaves, but SDIAF plants showed signs of oxidative stress. Moreover, DIS treatments led to changes in the secondary metabolism, both in leaves and in fruits, with increased total phenolic compounds, ortho‐diphenols, and flavonoid concentration, and higher total antioxidant capacity, as well higher oil content. Phenolic profiles showed the relevance of an early harvest in order to obtain higher oleuropein levels with associated higher health benefits.
CONCLUSION
Adequate DIS are essential for sustainable olive growing, as they enhance the competitiveness of the sector in terms of olive production and associated quality parameters. © 2019 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>31583702</pmid><doi>10.1002/jsfa.10064</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2482-7873</orcidid><orcidid>https://orcid.org/0000-0003-2370-6084</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5142 |
ispartof | Journal of the science of food and agriculture, 2020-01, Vol.100 (2), p.682-694 |
issn | 0022-5142 1097-0010 |
language | eng |
recordid | cdi_proquest_miscellaneous_2301428840 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Agricultural Irrigation - methods Agricultural practices Agronomy Antioxidants Chemical composition Competitiveness Diphenols ecophysiology Evapotranspiration Flavonoids Fruit - chemistry Fruit - growth & development Fruit - metabolism fruit physicochemical properties Fruit trees Fruits Irrigation irrigation regime Irrigation water Leaves Metabolism Metabolites Olea - chemistry Olea - growth & development Olea - metabolism Olea europaea Oleuropein Organic chemistry Oxidative Stress Parameters Phenolic compounds Phenols Phenols - chemistry Phenols - metabolism Photosynthesis Plant Extracts - chemistry Plant Extracts - metabolism Plant Leaves - growth & development Plant Leaves - metabolism Plant tissues Trees Water - analysis Water - metabolism Water regimes Water use Water use efficiency |
title | Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Olive%20tree%20physiology%20and%20chemical%20composition%20of%20fruits%20are%20modulated%20by%20different%20deficit%20irrigation%20strategies&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Gon%C3%A7alves,%20Alexandre&rft.date=2020-01-30&rft.volume=100&rft.issue=2&rft.spage=682&rft.epage=694&rft.pages=682-694&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.10064&rft_dat=%3Cproquest_cross%3E2325674813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2325674813&rft_id=info:pmid/31583702&rfr_iscdi=true |