Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies

BACKGROUND Cropping practices focusing on agronomic water use efficiency and their impact on quality parameters must be investigated to overcome constraints affecting olive groves. We evaluated the response of olive trees (Olea europaea, cv. ‘Cobrançosa’) to different water regimes: full irrigation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 2020-01, Vol.100 (2), p.682-694
Hauptverfasser: Gonçalves, Alexandre, Silva, Ermelinda, Brito, Cátia, Martins, Sandra, Pinto, Luís, Dinis, Lia‐Tânia, Luzio, Ana, Martins‐Gomes, Carlos, Fernandes‐Silva, Anabela, Ribeiro, Carlos, Rodrigues, M. Ângelo, Moutinho‐Pereira, José, Nunes, Fernando M., Correia, Carlos M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 694
container_issue 2
container_start_page 682
container_title Journal of the science of food and agriculture
container_volume 100
creator Gonçalves, Alexandre
Silva, Ermelinda
Brito, Cátia
Martins, Sandra
Pinto, Luís
Dinis, Lia‐Tânia
Luzio, Ana
Martins‐Gomes, Carlos
Fernandes‐Silva, Anabela
Ribeiro, Carlos
Rodrigues, M. Ângelo
Moutinho‐Pereira, José
Nunes, Fernando M.
Correia, Carlos M.
description BACKGROUND Cropping practices focusing on agronomic water use efficiency and their impact on quality parameters must be investigated to overcome constraints affecting olive groves. We evaluated the response of olive trees (Olea europaea, cv. ‘Cobrançosa’) to different water regimes: full irrigation (FI, 100% crop evapotranspiration (ETc)), and three deficit irrigation strategies (DIS) (regulated (RDI, irrigated with 80% of crop evapotranspiration (ETc) in phases I and III of fruit growth and 10% of ETc in the pit hardening stage), and two continuous sustained strategies (SDI) – a conventional SDI (27.5% of ETc), and low‐frequency irrigation adopted by the farmer (SDIAF, 21.2% of ETc). RESULTS The effects of water regimes on the plant water status, photosynthetic performance, metabolite fluctuations and fruit quality parameters were evaluated. All DIS treatments enhanced leaf tissue density; RDI and SDI generally did not affect leaf water status and maintained photosynthetic machinery working properly, and the SDIAF treatment impaired olive tree physiological indicators. The DIS treatments maintained the levels of primary metabolites in leaves, but SDIAF plants showed signs of oxidative stress. Moreover, DIS treatments led to changes in the secondary metabolism, both in leaves and in fruits, with increased total phenolic compounds, ortho‐diphenols, and flavonoid concentration, and higher total antioxidant capacity, as well higher oil content. Phenolic profiles showed the relevance of an early harvest in order to obtain higher oleuropein levels with associated higher health benefits. CONCLUSION Adequate DIS are essential for sustainable olive growing, as they enhance the competitiveness of the sector in terms of olive production and associated quality parameters. © 2019 Society of Chemical Industry
doi_str_mv 10.1002/jsfa.10064
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2301428840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2325674813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4194-2f0374d33a21df6d60927af181a9ff1b9487b98102817bbd5fa4acf22a2e85263</originalsourceid><addsrcrecordid>eNp90ctKxDAUBuAgio6XjQ8gATciVE_StE2XIl4RXKjrkjYnY4a2GZNW6dubcdSFC1cJ5Ds_4fyEHDI4YwD8fBGMWt1ysUFmDMoiAWCwSWbxkScZE3yH7IawAICyzPNtspOyTKYF8Bl5e2ztO9LBI9Ll6xSsa918oqrXtHnFzjaqpY3rli7YwbqeOkONH-0QqPJIO6fHVg2oaT1RbY1Bj_1ANRrb2IFa7-1cfc2FwUc3txj2yZZRbcCD73OPvFxfPV_eJg-PN3eXFw9JI1gpEm4gLYROU8WZNrnOoeSFMkwyVRrD6lLIoi4lAy5ZUdc6M0qoxnCuOMqM5-keOVnnLr17GzEMVWdDg22renRjqHgKcTNSCoj0-A9duNH38XdR8SwvhGRpVKdr1XgXgkdTLb3tlJ8qBtWqiGpVRPVVRMRH35Fj3aH-pT-bj4CtwYdtcfonqrp_ur5Yh34CO5-T2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325674813</pqid></control><display><type>article</type><title>Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gonçalves, Alexandre ; Silva, Ermelinda ; Brito, Cátia ; Martins, Sandra ; Pinto, Luís ; Dinis, Lia‐Tânia ; Luzio, Ana ; Martins‐Gomes, Carlos ; Fernandes‐Silva, Anabela ; Ribeiro, Carlos ; Rodrigues, M. Ângelo ; Moutinho‐Pereira, José ; Nunes, Fernando M. ; Correia, Carlos M.</creator><creatorcontrib>Gonçalves, Alexandre ; Silva, Ermelinda ; Brito, Cátia ; Martins, Sandra ; Pinto, Luís ; Dinis, Lia‐Tânia ; Luzio, Ana ; Martins‐Gomes, Carlos ; Fernandes‐Silva, Anabela ; Ribeiro, Carlos ; Rodrigues, M. Ângelo ; Moutinho‐Pereira, José ; Nunes, Fernando M. ; Correia, Carlos M.</creatorcontrib><description>BACKGROUND Cropping practices focusing on agronomic water use efficiency and their impact on quality parameters must be investigated to overcome constraints affecting olive groves. We evaluated the response of olive trees (Olea europaea, cv. ‘Cobrançosa’) to different water regimes: full irrigation (FI, 100% crop evapotranspiration (ETc)), and three deficit irrigation strategies (DIS) (regulated (RDI, irrigated with 80% of crop evapotranspiration (ETc) in phases I and III of fruit growth and 10% of ETc in the pit hardening stage), and two continuous sustained strategies (SDI) – a conventional SDI (27.5% of ETc), and low‐frequency irrigation adopted by the farmer (SDIAF, 21.2% of ETc). RESULTS The effects of water regimes on the plant water status, photosynthetic performance, metabolite fluctuations and fruit quality parameters were evaluated. All DIS treatments enhanced leaf tissue density; RDI and SDI generally did not affect leaf water status and maintained photosynthetic machinery working properly, and the SDIAF treatment impaired olive tree physiological indicators. The DIS treatments maintained the levels of primary metabolites in leaves, but SDIAF plants showed signs of oxidative stress. Moreover, DIS treatments led to changes in the secondary metabolism, both in leaves and in fruits, with increased total phenolic compounds, ortho‐diphenols, and flavonoid concentration, and higher total antioxidant capacity, as well higher oil content. Phenolic profiles showed the relevance of an early harvest in order to obtain higher oleuropein levels with associated higher health benefits. CONCLUSION Adequate DIS are essential for sustainable olive growing, as they enhance the competitiveness of the sector in terms of olive production and associated quality parameters. © 2019 Society of Chemical Industry</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.10064</identifier><identifier>PMID: 31583702</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Agricultural Irrigation - methods ; Agricultural practices ; Agronomy ; Antioxidants ; Chemical composition ; Competitiveness ; Diphenols ; ecophysiology ; Evapotranspiration ; Flavonoids ; Fruit - chemistry ; Fruit - growth &amp; development ; Fruit - metabolism ; fruit physicochemical properties ; Fruit trees ; Fruits ; Irrigation ; irrigation regime ; Irrigation water ; Leaves ; Metabolism ; Metabolites ; Olea - chemistry ; Olea - growth &amp; development ; Olea - metabolism ; Olea europaea ; Oleuropein ; Organic chemistry ; Oxidative Stress ; Parameters ; Phenolic compounds ; Phenols ; Phenols - chemistry ; Phenols - metabolism ; Photosynthesis ; Plant Extracts - chemistry ; Plant Extracts - metabolism ; Plant Leaves - growth &amp; development ; Plant Leaves - metabolism ; Plant tissues ; Trees ; Water - analysis ; Water - metabolism ; Water regimes ; Water use ; Water use efficiency</subject><ispartof>Journal of the science of food and agriculture, 2020-01, Vol.100 (2), p.682-694</ispartof><rights>2019 Society of Chemical Industry</rights><rights>2019 Society of Chemical Industry.</rights><rights>Copyright © 2020 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4194-2f0374d33a21df6d60927af181a9ff1b9487b98102817bbd5fa4acf22a2e85263</citedby><cites>FETCH-LOGICAL-c4194-2f0374d33a21df6d60927af181a9ff1b9487b98102817bbd5fa4acf22a2e85263</cites><orcidid>0000-0003-2482-7873 ; 0000-0003-2370-6084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsfa.10064$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsfa.10064$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31583702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gonçalves, Alexandre</creatorcontrib><creatorcontrib>Silva, Ermelinda</creatorcontrib><creatorcontrib>Brito, Cátia</creatorcontrib><creatorcontrib>Martins, Sandra</creatorcontrib><creatorcontrib>Pinto, Luís</creatorcontrib><creatorcontrib>Dinis, Lia‐Tânia</creatorcontrib><creatorcontrib>Luzio, Ana</creatorcontrib><creatorcontrib>Martins‐Gomes, Carlos</creatorcontrib><creatorcontrib>Fernandes‐Silva, Anabela</creatorcontrib><creatorcontrib>Ribeiro, Carlos</creatorcontrib><creatorcontrib>Rodrigues, M. Ângelo</creatorcontrib><creatorcontrib>Moutinho‐Pereira, José</creatorcontrib><creatorcontrib>Nunes, Fernando M.</creatorcontrib><creatorcontrib>Correia, Carlos M.</creatorcontrib><title>Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND Cropping practices focusing on agronomic water use efficiency and their impact on quality parameters must be investigated to overcome constraints affecting olive groves. We evaluated the response of olive trees (Olea europaea, cv. ‘Cobrançosa’) to different water regimes: full irrigation (FI, 100% crop evapotranspiration (ETc)), and three deficit irrigation strategies (DIS) (regulated (RDI, irrigated with 80% of crop evapotranspiration (ETc) in phases I and III of fruit growth and 10% of ETc in the pit hardening stage), and two continuous sustained strategies (SDI) – a conventional SDI (27.5% of ETc), and low‐frequency irrigation adopted by the farmer (SDIAF, 21.2% of ETc). RESULTS The effects of water regimes on the plant water status, photosynthetic performance, metabolite fluctuations and fruit quality parameters were evaluated. All DIS treatments enhanced leaf tissue density; RDI and SDI generally did not affect leaf water status and maintained photosynthetic machinery working properly, and the SDIAF treatment impaired olive tree physiological indicators. The DIS treatments maintained the levels of primary metabolites in leaves, but SDIAF plants showed signs of oxidative stress. Moreover, DIS treatments led to changes in the secondary metabolism, both in leaves and in fruits, with increased total phenolic compounds, ortho‐diphenols, and flavonoid concentration, and higher total antioxidant capacity, as well higher oil content. Phenolic profiles showed the relevance of an early harvest in order to obtain higher oleuropein levels with associated higher health benefits. CONCLUSION Adequate DIS are essential for sustainable olive growing, as they enhance the competitiveness of the sector in terms of olive production and associated quality parameters. © 2019 Society of Chemical Industry</description><subject>Agricultural Irrigation - methods</subject><subject>Agricultural practices</subject><subject>Agronomy</subject><subject>Antioxidants</subject><subject>Chemical composition</subject><subject>Competitiveness</subject><subject>Diphenols</subject><subject>ecophysiology</subject><subject>Evapotranspiration</subject><subject>Flavonoids</subject><subject>Fruit - chemistry</subject><subject>Fruit - growth &amp; development</subject><subject>Fruit - metabolism</subject><subject>fruit physicochemical properties</subject><subject>Fruit trees</subject><subject>Fruits</subject><subject>Irrigation</subject><subject>irrigation regime</subject><subject>Irrigation water</subject><subject>Leaves</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Olea - chemistry</subject><subject>Olea - growth &amp; development</subject><subject>Olea - metabolism</subject><subject>Olea europaea</subject><subject>Oleuropein</subject><subject>Organic chemistry</subject><subject>Oxidative Stress</subject><subject>Parameters</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Phenols - chemistry</subject><subject>Phenols - metabolism</subject><subject>Photosynthesis</subject><subject>Plant Extracts - chemistry</subject><subject>Plant Extracts - metabolism</subject><subject>Plant Leaves - growth &amp; development</subject><subject>Plant Leaves - metabolism</subject><subject>Plant tissues</subject><subject>Trees</subject><subject>Water - analysis</subject><subject>Water - metabolism</subject><subject>Water regimes</subject><subject>Water use</subject><subject>Water use efficiency</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90ctKxDAUBuAgio6XjQ8gATciVE_StE2XIl4RXKjrkjYnY4a2GZNW6dubcdSFC1cJ5Ds_4fyEHDI4YwD8fBGMWt1ysUFmDMoiAWCwSWbxkScZE3yH7IawAICyzPNtspOyTKYF8Bl5e2ztO9LBI9Ll6xSsa918oqrXtHnFzjaqpY3rli7YwbqeOkONH-0QqPJIO6fHVg2oaT1RbY1Bj_1ANRrb2IFa7-1cfc2FwUc3txj2yZZRbcCD73OPvFxfPV_eJg-PN3eXFw9JI1gpEm4gLYROU8WZNrnOoeSFMkwyVRrD6lLIoi4lAy5ZUdc6M0qoxnCuOMqM5-keOVnnLr17GzEMVWdDg22renRjqHgKcTNSCoj0-A9duNH38XdR8SwvhGRpVKdr1XgXgkdTLb3tlJ8qBtWqiGpVRPVVRMRH35Fj3aH-pT-bj4CtwYdtcfonqrp_ur5Yh34CO5-T2Q</recordid><startdate>20200130</startdate><enddate>20200130</enddate><creator>Gonçalves, Alexandre</creator><creator>Silva, Ermelinda</creator><creator>Brito, Cátia</creator><creator>Martins, Sandra</creator><creator>Pinto, Luís</creator><creator>Dinis, Lia‐Tânia</creator><creator>Luzio, Ana</creator><creator>Martins‐Gomes, Carlos</creator><creator>Fernandes‐Silva, Anabela</creator><creator>Ribeiro, Carlos</creator><creator>Rodrigues, M. Ângelo</creator><creator>Moutinho‐Pereira, José</creator><creator>Nunes, Fernando M.</creator><creator>Correia, Carlos M.</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2482-7873</orcidid><orcidid>https://orcid.org/0000-0003-2370-6084</orcidid></search><sort><creationdate>20200130</creationdate><title>Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies</title><author>Gonçalves, Alexandre ; Silva, Ermelinda ; Brito, Cátia ; Martins, Sandra ; Pinto, Luís ; Dinis, Lia‐Tânia ; Luzio, Ana ; Martins‐Gomes, Carlos ; Fernandes‐Silva, Anabela ; Ribeiro, Carlos ; Rodrigues, M. Ângelo ; Moutinho‐Pereira, José ; Nunes, Fernando M. ; Correia, Carlos M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4194-2f0374d33a21df6d60927af181a9ff1b9487b98102817bbd5fa4acf22a2e85263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural Irrigation - methods</topic><topic>Agricultural practices</topic><topic>Agronomy</topic><topic>Antioxidants</topic><topic>Chemical composition</topic><topic>Competitiveness</topic><topic>Diphenols</topic><topic>ecophysiology</topic><topic>Evapotranspiration</topic><topic>Flavonoids</topic><topic>Fruit - chemistry</topic><topic>Fruit - growth &amp; development</topic><topic>Fruit - metabolism</topic><topic>fruit physicochemical properties</topic><topic>Fruit trees</topic><topic>Fruits</topic><topic>Irrigation</topic><topic>irrigation regime</topic><topic>Irrigation water</topic><topic>Leaves</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Olea - chemistry</topic><topic>Olea - growth &amp; development</topic><topic>Olea - metabolism</topic><topic>Olea europaea</topic><topic>Oleuropein</topic><topic>Organic chemistry</topic><topic>Oxidative Stress</topic><topic>Parameters</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Phenols - chemistry</topic><topic>Phenols - metabolism</topic><topic>Photosynthesis</topic><topic>Plant Extracts - chemistry</topic><topic>Plant Extracts - metabolism</topic><topic>Plant Leaves - growth &amp; development</topic><topic>Plant Leaves - metabolism</topic><topic>Plant tissues</topic><topic>Trees</topic><topic>Water - analysis</topic><topic>Water - metabolism</topic><topic>Water regimes</topic><topic>Water use</topic><topic>Water use efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonçalves, Alexandre</creatorcontrib><creatorcontrib>Silva, Ermelinda</creatorcontrib><creatorcontrib>Brito, Cátia</creatorcontrib><creatorcontrib>Martins, Sandra</creatorcontrib><creatorcontrib>Pinto, Luís</creatorcontrib><creatorcontrib>Dinis, Lia‐Tânia</creatorcontrib><creatorcontrib>Luzio, Ana</creatorcontrib><creatorcontrib>Martins‐Gomes, Carlos</creatorcontrib><creatorcontrib>Fernandes‐Silva, Anabela</creatorcontrib><creatorcontrib>Ribeiro, Carlos</creatorcontrib><creatorcontrib>Rodrigues, M. Ângelo</creatorcontrib><creatorcontrib>Moutinho‐Pereira, José</creatorcontrib><creatorcontrib>Nunes, Fernando M.</creatorcontrib><creatorcontrib>Correia, Carlos M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonçalves, Alexandre</au><au>Silva, Ermelinda</au><au>Brito, Cátia</au><au>Martins, Sandra</au><au>Pinto, Luís</au><au>Dinis, Lia‐Tânia</au><au>Luzio, Ana</au><au>Martins‐Gomes, Carlos</au><au>Fernandes‐Silva, Anabela</au><au>Ribeiro, Carlos</au><au>Rodrigues, M. Ângelo</au><au>Moutinho‐Pereira, José</au><au>Nunes, Fernando M.</au><au>Correia, Carlos M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2020-01-30</date><risdate>2020</risdate><volume>100</volume><issue>2</issue><spage>682</spage><epage>694</epage><pages>682-694</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND Cropping practices focusing on agronomic water use efficiency and their impact on quality parameters must be investigated to overcome constraints affecting olive groves. We evaluated the response of olive trees (Olea europaea, cv. ‘Cobrançosa’) to different water regimes: full irrigation (FI, 100% crop evapotranspiration (ETc)), and three deficit irrigation strategies (DIS) (regulated (RDI, irrigated with 80% of crop evapotranspiration (ETc) in phases I and III of fruit growth and 10% of ETc in the pit hardening stage), and two continuous sustained strategies (SDI) – a conventional SDI (27.5% of ETc), and low‐frequency irrigation adopted by the farmer (SDIAF, 21.2% of ETc). RESULTS The effects of water regimes on the plant water status, photosynthetic performance, metabolite fluctuations and fruit quality parameters were evaluated. All DIS treatments enhanced leaf tissue density; RDI and SDI generally did not affect leaf water status and maintained photosynthetic machinery working properly, and the SDIAF treatment impaired olive tree physiological indicators. The DIS treatments maintained the levels of primary metabolites in leaves, but SDIAF plants showed signs of oxidative stress. Moreover, DIS treatments led to changes in the secondary metabolism, both in leaves and in fruits, with increased total phenolic compounds, ortho‐diphenols, and flavonoid concentration, and higher total antioxidant capacity, as well higher oil content. Phenolic profiles showed the relevance of an early harvest in order to obtain higher oleuropein levels with associated higher health benefits. CONCLUSION Adequate DIS are essential for sustainable olive growing, as they enhance the competitiveness of the sector in terms of olive production and associated quality parameters. © 2019 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>31583702</pmid><doi>10.1002/jsfa.10064</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2482-7873</orcidid><orcidid>https://orcid.org/0000-0003-2370-6084</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5142
ispartof Journal of the science of food and agriculture, 2020-01, Vol.100 (2), p.682-694
issn 0022-5142
1097-0010
language eng
recordid cdi_proquest_miscellaneous_2301428840
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Agricultural Irrigation - methods
Agricultural practices
Agronomy
Antioxidants
Chemical composition
Competitiveness
Diphenols
ecophysiology
Evapotranspiration
Flavonoids
Fruit - chemistry
Fruit - growth & development
Fruit - metabolism
fruit physicochemical properties
Fruit trees
Fruits
Irrigation
irrigation regime
Irrigation water
Leaves
Metabolism
Metabolites
Olea - chemistry
Olea - growth & development
Olea - metabolism
Olea europaea
Oleuropein
Organic chemistry
Oxidative Stress
Parameters
Phenolic compounds
Phenols
Phenols - chemistry
Phenols - metabolism
Photosynthesis
Plant Extracts - chemistry
Plant Extracts - metabolism
Plant Leaves - growth & development
Plant Leaves - metabolism
Plant tissues
Trees
Water - analysis
Water - metabolism
Water regimes
Water use
Water use efficiency
title Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Olive%20tree%20physiology%20and%20chemical%20composition%20of%20fruits%20are%20modulated%20by%20different%20deficit%20irrigation%20strategies&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Gon%C3%A7alves,%20Alexandre&rft.date=2020-01-30&rft.volume=100&rft.issue=2&rft.spage=682&rft.epage=694&rft.pages=682-694&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.10064&rft_dat=%3Cproquest_cross%3E2325674813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2325674813&rft_id=info:pmid/31583702&rfr_iscdi=true