Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis

• Environmental light signal and GAs synergistically regulate seed dormancy and germination. The phytochrome B (phyB) photoreceptor regulates expression of the REVEILLE1 (RVE1) transcription factor, which directly inhibits GIBBERELLIN 3-OXIDASE2 transcription, suppressing GA biosynthesis. However, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2020-02, Vol.225 (4), p.1593-1605
Hauptverfasser: Yang, Liwen, Jiang, Zhimin, Liu, Shuangrong, Lin, Rongcheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1605
container_issue 4
container_start_page 1593
container_title The New phytologist
container_volume 225
creator Yang, Liwen
Jiang, Zhimin
Liu, Shuangrong
Lin, Rongcheng
description • Environmental light signal and GAs synergistically regulate seed dormancy and germination. The phytochrome B (phyB) photoreceptor regulates expression of the REVEILLE1 (RVE1) transcription factor, which directly inhibits GIBBERELLIN 3-OXIDASE2 transcription, suppressing GA biosynthesis. However, whether phyB-RVE1 coordinates with GA signaling in controlling seed dormancy and germination remains unknown. • Here, we demonstrate that RVE1 regulation of seed dormancy and germination requires a DELLA repressor, REPRESSOR OF GA-LIKE2 (RGL2), in Arabidopsis thaliana. • RVE1 interacts with both RGL2 and its E3 ubiquitin ligase SLEEPY1 (SLY1) and promotes RGL2 stability by restraining the RGL2–SLY1 interaction. Furthermore, RVE1 and RGL2 synergistically regulate global transcriptome changes; RGL2 enhances the DNA-binding capacity and transcriptional activity of RVE1 in regulating downstream gene expression. Moreover, RGL2 expression is repressed by phyB. • Our study reveals a novel regulatory mechanism in which the RVE1–RGL2 module coordinately controls seed dormancy and germination by integrating light perception, GA metabolism and GA signaling pathways.
doi_str_mv 10.1111/nph.16236
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2300598969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26896779</jstor_id><sourcerecordid>26896779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4106-8f76dba0f8a8d9208963185a9d4eae8aedf94bdb14c5b93bc8a7ca00f9b3f623</originalsourceid><addsrcrecordid>eNp1kMFO3DAQQK2qqCy0h35AK0u90EPAjh3HPq5QgFWjtkKo6s214wnNKnFSOxHav8ewwKESvszlzZPnIfSRklOa3pmf_p5SkTPxBq0oFyqTlJVv0YqQXGaCi9-H6CjGLSFEFSJ_hw4ZLSThslyhPxs_Q5h6s8MW5jsAj6-rX9WmriuKjXf4-nKd1ZtvVY4D3C69mSHiCOCwG8NgfLN7pG4hDJ03czd63Hm8DsZ2bpxiF9-jg9b0ET48zWN0c1HdnF9l9Y_Lzfm6zhpOichkWwpnDWmlkU7lRCrBqCyMchwMSAOuVdw6S3lTWMVsI03ZGEJaZVmbTj9GJ3vtFMZ_C8RZD11soO-Nh3GJOmeEFCpZVUK__IduxyX49Dmdc_bQjDOaqK97qgljjAFaPYVuMGGnKdEP1XWqrh-rJ_bzk3GxA7gX8jlzAs72wF3Xw-51k_7-8-pZ-Wm_sY3zGF42cpFOKEvF7gGOWJRH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430028431</pqid></control><display><type>article</type><title>Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Yang, Liwen ; Jiang, Zhimin ; Liu, Shuangrong ; Lin, Rongcheng</creator><creatorcontrib>Yang, Liwen ; Jiang, Zhimin ; Liu, Shuangrong ; Lin, Rongcheng</creatorcontrib><description>• Environmental light signal and GAs synergistically regulate seed dormancy and germination. The phytochrome B (phyB) photoreceptor regulates expression of the REVEILLE1 (RVE1) transcription factor, which directly inhibits GIBBERELLIN 3-OXIDASE2 transcription, suppressing GA biosynthesis. However, whether phyB-RVE1 coordinates with GA signaling in controlling seed dormancy and germination remains unknown. • Here, we demonstrate that RVE1 regulation of seed dormancy and germination requires a DELLA repressor, REPRESSOR OF GA-LIKE2 (RGL2), in Arabidopsis thaliana. • RVE1 interacts with both RGL2 and its E3 ubiquitin ligase SLEEPY1 (SLY1) and promotes RGL2 stability by restraining the RGL2–SLY1 interaction. Furthermore, RVE1 and RGL2 synergistically regulate global transcriptome changes; RGL2 enhances the DNA-binding capacity and transcriptional activity of RVE1 in regulating downstream gene expression. Moreover, RGL2 expression is repressed by phyB. • Our study reveals a novel regulatory mechanism in which the RVE1–RGL2 module coordinately controls seed dormancy and germination by integrating light perception, GA metabolism and GA signaling pathways.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16236</identifier><identifier>PMID: 31580487</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biosynthesis ; DELLA ; Deoxyribonucleic acid ; DNA ; Dormancy ; GA signaling ; Gene expression ; Gene Expression Regulation, Plant ; Germination ; Gibberellins ; Light ; Metabolism ; Photoreceptors ; phyB ; Phytochrome B ; Phytochrome B - genetics ; Phytochrome B - metabolism ; Plant Dormancy ; Plant growth substances ; Protein Binding ; protein stability ; Regulatory mechanisms (biology) ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Plant ; seed germination ; Seeds ; Sequence Analysis, RNA ; Signaling ; Stability ; Transcription ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic ; Ubiquitin ; Ubiquitin-protein ligase</subject><ispartof>The New phytologist, 2020-02, Vol.225 (4), p.1593-1605</ispartof><rights>2019 The Authors © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</rights><rights>Copyright © 2020 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4106-8f76dba0f8a8d9208963185a9d4eae8aedf94bdb14c5b93bc8a7ca00f9b3f623</citedby><cites>FETCH-LOGICAL-c4106-8f76dba0f8a8d9208963185a9d4eae8aedf94bdb14c5b93bc8a7ca00f9b3f623</cites><orcidid>0000-0001-8346-3390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26896779$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26896779$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1416,1432,27923,27924,45573,45574,46408,46832,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31580487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Liwen</creatorcontrib><creatorcontrib>Jiang, Zhimin</creatorcontrib><creatorcontrib>Liu, Shuangrong</creatorcontrib><creatorcontrib>Lin, Rongcheng</creatorcontrib><title>Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• Environmental light signal and GAs synergistically regulate seed dormancy and germination. The phytochrome B (phyB) photoreceptor regulates expression of the REVEILLE1 (RVE1) transcription factor, which directly inhibits GIBBERELLIN 3-OXIDASE2 transcription, suppressing GA biosynthesis. However, whether phyB-RVE1 coordinates with GA signaling in controlling seed dormancy and germination remains unknown. • Here, we demonstrate that RVE1 regulation of seed dormancy and germination requires a DELLA repressor, REPRESSOR OF GA-LIKE2 (RGL2), in Arabidopsis thaliana. • RVE1 interacts with both RGL2 and its E3 ubiquitin ligase SLEEPY1 (SLY1) and promotes RGL2 stability by restraining the RGL2–SLY1 interaction. Furthermore, RVE1 and RGL2 synergistically regulate global transcriptome changes; RGL2 enhances the DNA-binding capacity and transcriptional activity of RVE1 in regulating downstream gene expression. Moreover, RGL2 expression is repressed by phyB. • Our study reveals a novel regulatory mechanism in which the RVE1–RGL2 module coordinately controls seed dormancy and germination by integrating light perception, GA metabolism and GA signaling pathways.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biosynthesis</subject><subject>DELLA</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dormancy</subject><subject>GA signaling</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Germination</subject><subject>Gibberellins</subject><subject>Light</subject><subject>Metabolism</subject><subject>Photoreceptors</subject><subject>phyB</subject><subject>Phytochrome B</subject><subject>Phytochrome B - genetics</subject><subject>Phytochrome B - metabolism</subject><subject>Plant Dormancy</subject><subject>Plant growth substances</subject><subject>Protein Binding</subject><subject>protein stability</subject><subject>Regulatory mechanisms (biology)</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Plant</subject><subject>seed germination</subject><subject>Seeds</subject><subject>Sequence Analysis, RNA</subject><subject>Signaling</subject><subject>Stability</subject><subject>Transcription</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>Ubiquitin</subject><subject>Ubiquitin-protein ligase</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMFO3DAQQK2qqCy0h35AK0u90EPAjh3HPq5QgFWjtkKo6s214wnNKnFSOxHav8ewwKESvszlzZPnIfSRklOa3pmf_p5SkTPxBq0oFyqTlJVv0YqQXGaCi9-H6CjGLSFEFSJ_hw4ZLSThslyhPxs_Q5h6s8MW5jsAj6-rX9WmriuKjXf4-nKd1ZtvVY4D3C69mSHiCOCwG8NgfLN7pG4hDJ03czd63Hm8DsZ2bpxiF9-jg9b0ET48zWN0c1HdnF9l9Y_Lzfm6zhpOichkWwpnDWmlkU7lRCrBqCyMchwMSAOuVdw6S3lTWMVsI03ZGEJaZVmbTj9GJ3vtFMZ_C8RZD11soO-Nh3GJOmeEFCpZVUK__IduxyX49Dmdc_bQjDOaqK97qgljjAFaPYVuMGGnKdEP1XWqrh-rJ_bzk3GxA7gX8jlzAs72wF3Xw-51k_7-8-pZ-Wm_sY3zGF42cpFOKEvF7gGOWJRH</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Yang, Liwen</creator><creator>Jiang, Zhimin</creator><creator>Liu, Shuangrong</creator><creator>Lin, Rongcheng</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8346-3390</orcidid></search><sort><creationdate>20200201</creationdate><title>Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis</title><author>Yang, Liwen ; Jiang, Zhimin ; Liu, Shuangrong ; Lin, Rongcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4106-8f76dba0f8a8d9208963185a9d4eae8aedf94bdb14c5b93bc8a7ca00f9b3f623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biosynthesis</topic><topic>DELLA</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dormancy</topic><topic>GA signaling</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Germination</topic><topic>Gibberellins</topic><topic>Light</topic><topic>Metabolism</topic><topic>Photoreceptors</topic><topic>phyB</topic><topic>Phytochrome B</topic><topic>Phytochrome B - genetics</topic><topic>Phytochrome B - metabolism</topic><topic>Plant Dormancy</topic><topic>Plant growth substances</topic><topic>Protein Binding</topic><topic>protein stability</topic><topic>Regulatory mechanisms (biology)</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Plant</topic><topic>seed germination</topic><topic>Seeds</topic><topic>Sequence Analysis, RNA</topic><topic>Signaling</topic><topic>Stability</topic><topic>Transcription</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>Ubiquitin</topic><topic>Ubiquitin-protein ligase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Liwen</creatorcontrib><creatorcontrib>Jiang, Zhimin</creatorcontrib><creatorcontrib>Liu, Shuangrong</creatorcontrib><creatorcontrib>Lin, Rongcheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Liwen</au><au>Jiang, Zhimin</au><au>Liu, Shuangrong</au><au>Lin, Rongcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>225</volume><issue>4</issue><spage>1593</spage><epage>1605</epage><pages>1593-1605</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• Environmental light signal and GAs synergistically regulate seed dormancy and germination. The phytochrome B (phyB) photoreceptor regulates expression of the REVEILLE1 (RVE1) transcription factor, which directly inhibits GIBBERELLIN 3-OXIDASE2 transcription, suppressing GA biosynthesis. However, whether phyB-RVE1 coordinates with GA signaling in controlling seed dormancy and germination remains unknown. • Here, we demonstrate that RVE1 regulation of seed dormancy and germination requires a DELLA repressor, REPRESSOR OF GA-LIKE2 (RGL2), in Arabidopsis thaliana. • RVE1 interacts with both RGL2 and its E3 ubiquitin ligase SLEEPY1 (SLY1) and promotes RGL2 stability by restraining the RGL2–SLY1 interaction. Furthermore, RVE1 and RGL2 synergistically regulate global transcriptome changes; RGL2 enhances the DNA-binding capacity and transcriptional activity of RVE1 in regulating downstream gene expression. Moreover, RGL2 expression is repressed by phyB. • Our study reveals a novel regulatory mechanism in which the RVE1–RGL2 module coordinately controls seed dormancy and germination by integrating light perception, GA metabolism and GA signaling pathways.</abstract><cop>England</cop><pub>Wiley</pub><pmid>31580487</pmid><doi>10.1111/nph.16236</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8346-3390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2020-02, Vol.225 (4), p.1593-1605
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2300598969
source MEDLINE; Wiley Online Library Free Content; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Biosynthesis
DELLA
Deoxyribonucleic acid
DNA
Dormancy
GA signaling
Gene expression
Gene Expression Regulation, Plant
Germination
Gibberellins
Light
Metabolism
Photoreceptors
phyB
Phytochrome B
Phytochrome B - genetics
Phytochrome B - metabolism
Plant Dormancy
Plant growth substances
Protein Binding
protein stability
Regulatory mechanisms (biology)
Reverse Transcriptase Polymerase Chain Reaction
RNA, Plant
seed germination
Seeds
Sequence Analysis, RNA
Signaling
Stability
Transcription
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic
Ubiquitin
Ubiquitin-protein ligase
title Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20between%20REVEILLE1%20and%20RGA-LIKE2%20regulates%20seed%20dormancy%20and%20germination%20in%20Arabidopsis&rft.jtitle=The%20New%20phytologist&rft.au=Yang,%20Liwen&rft.date=2020-02-01&rft.volume=225&rft.issue=4&rft.spage=1593&rft.epage=1605&rft.pages=1593-1605&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16236&rft_dat=%3Cjstor_proqu%3E26896779%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430028431&rft_id=info:pmid/31580487&rft_jstor_id=26896779&rfr_iscdi=true