Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis
• Environmental light signal and GAs synergistically regulate seed dormancy and germination. The phytochrome B (phyB) photoreceptor regulates expression of the REVEILLE1 (RVE1) transcription factor, which directly inhibits GIBBERELLIN 3-OXIDASE2 transcription, suppressing GA biosynthesis. However, w...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2020-02, Vol.225 (4), p.1593-1605 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1605 |
---|---|
container_issue | 4 |
container_start_page | 1593 |
container_title | The New phytologist |
container_volume | 225 |
creator | Yang, Liwen Jiang, Zhimin Liu, Shuangrong Lin, Rongcheng |
description | • Environmental light signal and GAs synergistically regulate seed dormancy and germination. The phytochrome B (phyB) photoreceptor regulates expression of the REVEILLE1 (RVE1) transcription factor, which directly inhibits GIBBERELLIN 3-OXIDASE2 transcription, suppressing GA biosynthesis. However, whether phyB-RVE1 coordinates with GA signaling in controlling seed dormancy and germination remains unknown.
• Here, we demonstrate that RVE1 regulation of seed dormancy and germination requires a DELLA repressor, REPRESSOR OF GA-LIKE2 (RGL2), in Arabidopsis thaliana.
• RVE1 interacts with both RGL2 and its E3 ubiquitin ligase SLEEPY1 (SLY1) and promotes RGL2 stability by restraining the RGL2–SLY1 interaction. Furthermore, RVE1 and RGL2 synergistically regulate global transcriptome changes; RGL2 enhances the DNA-binding capacity and transcriptional activity of RVE1 in regulating downstream gene expression. Moreover, RGL2 expression is repressed by phyB.
• Our study reveals a novel regulatory mechanism in which the RVE1–RGL2 module coordinately controls seed dormancy and germination by integrating light perception, GA metabolism and GA signaling pathways. |
doi_str_mv | 10.1111/nph.16236 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2300598969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26896779</jstor_id><sourcerecordid>26896779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4106-8f76dba0f8a8d9208963185a9d4eae8aedf94bdb14c5b93bc8a7ca00f9b3f623</originalsourceid><addsrcrecordid>eNp1kMFO3DAQQK2qqCy0h35AK0u90EPAjh3HPq5QgFWjtkKo6s214wnNKnFSOxHav8ewwKESvszlzZPnIfSRklOa3pmf_p5SkTPxBq0oFyqTlJVv0YqQXGaCi9-H6CjGLSFEFSJ_hw4ZLSThslyhPxs_Q5h6s8MW5jsAj6-rX9WmriuKjXf4-nKd1ZtvVY4D3C69mSHiCOCwG8NgfLN7pG4hDJ03czd63Hm8DsZ2bpxiF9-jg9b0ET48zWN0c1HdnF9l9Y_Lzfm6zhpOichkWwpnDWmlkU7lRCrBqCyMchwMSAOuVdw6S3lTWMVsI03ZGEJaZVmbTj9GJ3vtFMZ_C8RZD11soO-Nh3GJOmeEFCpZVUK__IduxyX49Dmdc_bQjDOaqK97qgljjAFaPYVuMGGnKdEP1XWqrh-rJ_bzk3GxA7gX8jlzAs72wF3Xw-51k_7-8-pZ-Wm_sY3zGF42cpFOKEvF7gGOWJRH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430028431</pqid></control><display><type>article</type><title>Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Yang, Liwen ; Jiang, Zhimin ; Liu, Shuangrong ; Lin, Rongcheng</creator><creatorcontrib>Yang, Liwen ; Jiang, Zhimin ; Liu, Shuangrong ; Lin, Rongcheng</creatorcontrib><description>• Environmental light signal and GAs synergistically regulate seed dormancy and germination. The phytochrome B (phyB) photoreceptor regulates expression of the REVEILLE1 (RVE1) transcription factor, which directly inhibits GIBBERELLIN 3-OXIDASE2 transcription, suppressing GA biosynthesis. However, whether phyB-RVE1 coordinates with GA signaling in controlling seed dormancy and germination remains unknown.
• Here, we demonstrate that RVE1 regulation of seed dormancy and germination requires a DELLA repressor, REPRESSOR OF GA-LIKE2 (RGL2), in Arabidopsis thaliana.
• RVE1 interacts with both RGL2 and its E3 ubiquitin ligase SLEEPY1 (SLY1) and promotes RGL2 stability by restraining the RGL2–SLY1 interaction. Furthermore, RVE1 and RGL2 synergistically regulate global transcriptome changes; RGL2 enhances the DNA-binding capacity and transcriptional activity of RVE1 in regulating downstream gene expression. Moreover, RGL2 expression is repressed by phyB.
• Our study reveals a novel regulatory mechanism in which the RVE1–RGL2 module coordinately controls seed dormancy and germination by integrating light perception, GA metabolism and GA signaling pathways.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16236</identifier><identifier>PMID: 31580487</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biosynthesis ; DELLA ; Deoxyribonucleic acid ; DNA ; Dormancy ; GA signaling ; Gene expression ; Gene Expression Regulation, Plant ; Germination ; Gibberellins ; Light ; Metabolism ; Photoreceptors ; phyB ; Phytochrome B ; Phytochrome B - genetics ; Phytochrome B - metabolism ; Plant Dormancy ; Plant growth substances ; Protein Binding ; protein stability ; Regulatory mechanisms (biology) ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Plant ; seed germination ; Seeds ; Sequence Analysis, RNA ; Signaling ; Stability ; Transcription ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic ; Ubiquitin ; Ubiquitin-protein ligase</subject><ispartof>The New phytologist, 2020-02, Vol.225 (4), p.1593-1605</ispartof><rights>2019 The Authors © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</rights><rights>Copyright © 2020 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4106-8f76dba0f8a8d9208963185a9d4eae8aedf94bdb14c5b93bc8a7ca00f9b3f623</citedby><cites>FETCH-LOGICAL-c4106-8f76dba0f8a8d9208963185a9d4eae8aedf94bdb14c5b93bc8a7ca00f9b3f623</cites><orcidid>0000-0001-8346-3390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26896779$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26896779$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1416,1432,27923,27924,45573,45574,46408,46832,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31580487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Liwen</creatorcontrib><creatorcontrib>Jiang, Zhimin</creatorcontrib><creatorcontrib>Liu, Shuangrong</creatorcontrib><creatorcontrib>Lin, Rongcheng</creatorcontrib><title>Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• Environmental light signal and GAs synergistically regulate seed dormancy and germination. The phytochrome B (phyB) photoreceptor regulates expression of the REVEILLE1 (RVE1) transcription factor, which directly inhibits GIBBERELLIN 3-OXIDASE2 transcription, suppressing GA biosynthesis. However, whether phyB-RVE1 coordinates with GA signaling in controlling seed dormancy and germination remains unknown.
• Here, we demonstrate that RVE1 regulation of seed dormancy and germination requires a DELLA repressor, REPRESSOR OF GA-LIKE2 (RGL2), in Arabidopsis thaliana.
• RVE1 interacts with both RGL2 and its E3 ubiquitin ligase SLEEPY1 (SLY1) and promotes RGL2 stability by restraining the RGL2–SLY1 interaction. Furthermore, RVE1 and RGL2 synergistically regulate global transcriptome changes; RGL2 enhances the DNA-binding capacity and transcriptional activity of RVE1 in regulating downstream gene expression. Moreover, RGL2 expression is repressed by phyB.
• Our study reveals a novel regulatory mechanism in which the RVE1–RGL2 module coordinately controls seed dormancy and germination by integrating light perception, GA metabolism and GA signaling pathways.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biosynthesis</subject><subject>DELLA</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dormancy</subject><subject>GA signaling</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Germination</subject><subject>Gibberellins</subject><subject>Light</subject><subject>Metabolism</subject><subject>Photoreceptors</subject><subject>phyB</subject><subject>Phytochrome B</subject><subject>Phytochrome B - genetics</subject><subject>Phytochrome B - metabolism</subject><subject>Plant Dormancy</subject><subject>Plant growth substances</subject><subject>Protein Binding</subject><subject>protein stability</subject><subject>Regulatory mechanisms (biology)</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Plant</subject><subject>seed germination</subject><subject>Seeds</subject><subject>Sequence Analysis, RNA</subject><subject>Signaling</subject><subject>Stability</subject><subject>Transcription</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>Ubiquitin</subject><subject>Ubiquitin-protein ligase</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMFO3DAQQK2qqCy0h35AK0u90EPAjh3HPq5QgFWjtkKo6s214wnNKnFSOxHav8ewwKESvszlzZPnIfSRklOa3pmf_p5SkTPxBq0oFyqTlJVv0YqQXGaCi9-H6CjGLSFEFSJ_hw4ZLSThslyhPxs_Q5h6s8MW5jsAj6-rX9WmriuKjXf4-nKd1ZtvVY4D3C69mSHiCOCwG8NgfLN7pG4hDJ03czd63Hm8DsZ2bpxiF9-jg9b0ET48zWN0c1HdnF9l9Y_Lzfm6zhpOichkWwpnDWmlkU7lRCrBqCyMchwMSAOuVdw6S3lTWMVsI03ZGEJaZVmbTj9GJ3vtFMZ_C8RZD11soO-Nh3GJOmeEFCpZVUK__IduxyX49Dmdc_bQjDOaqK97qgljjAFaPYVuMGGnKdEP1XWqrh-rJ_bzk3GxA7gX8jlzAs72wF3Xw-51k_7-8-pZ-Wm_sY3zGF42cpFOKEvF7gGOWJRH</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Yang, Liwen</creator><creator>Jiang, Zhimin</creator><creator>Liu, Shuangrong</creator><creator>Lin, Rongcheng</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8346-3390</orcidid></search><sort><creationdate>20200201</creationdate><title>Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis</title><author>Yang, Liwen ; Jiang, Zhimin ; Liu, Shuangrong ; Lin, Rongcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4106-8f76dba0f8a8d9208963185a9d4eae8aedf94bdb14c5b93bc8a7ca00f9b3f623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biosynthesis</topic><topic>DELLA</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dormancy</topic><topic>GA signaling</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Germination</topic><topic>Gibberellins</topic><topic>Light</topic><topic>Metabolism</topic><topic>Photoreceptors</topic><topic>phyB</topic><topic>Phytochrome B</topic><topic>Phytochrome B - genetics</topic><topic>Phytochrome B - metabolism</topic><topic>Plant Dormancy</topic><topic>Plant growth substances</topic><topic>Protein Binding</topic><topic>protein stability</topic><topic>Regulatory mechanisms (biology)</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Plant</topic><topic>seed germination</topic><topic>Seeds</topic><topic>Sequence Analysis, RNA</topic><topic>Signaling</topic><topic>Stability</topic><topic>Transcription</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>Ubiquitin</topic><topic>Ubiquitin-protein ligase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Liwen</creatorcontrib><creatorcontrib>Jiang, Zhimin</creatorcontrib><creatorcontrib>Liu, Shuangrong</creatorcontrib><creatorcontrib>Lin, Rongcheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Liwen</au><au>Jiang, Zhimin</au><au>Liu, Shuangrong</au><au>Lin, Rongcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>225</volume><issue>4</issue><spage>1593</spage><epage>1605</epage><pages>1593-1605</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• Environmental light signal and GAs synergistically regulate seed dormancy and germination. The phytochrome B (phyB) photoreceptor regulates expression of the REVEILLE1 (RVE1) transcription factor, which directly inhibits GIBBERELLIN 3-OXIDASE2 transcription, suppressing GA biosynthesis. However, whether phyB-RVE1 coordinates with GA signaling in controlling seed dormancy and germination remains unknown.
• Here, we demonstrate that RVE1 regulation of seed dormancy and germination requires a DELLA repressor, REPRESSOR OF GA-LIKE2 (RGL2), in Arabidopsis thaliana.
• RVE1 interacts with both RGL2 and its E3 ubiquitin ligase SLEEPY1 (SLY1) and promotes RGL2 stability by restraining the RGL2–SLY1 interaction. Furthermore, RVE1 and RGL2 synergistically regulate global transcriptome changes; RGL2 enhances the DNA-binding capacity and transcriptional activity of RVE1 in regulating downstream gene expression. Moreover, RGL2 expression is repressed by phyB.
• Our study reveals a novel regulatory mechanism in which the RVE1–RGL2 module coordinately controls seed dormancy and germination by integrating light perception, GA metabolism and GA signaling pathways.</abstract><cop>England</cop><pub>Wiley</pub><pmid>31580487</pmid><doi>10.1111/nph.16236</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8346-3390</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2020-02, Vol.225 (4), p.1593-1605 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_2300598969 |
source | MEDLINE; Wiley Online Library Free Content; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Biosynthesis DELLA Deoxyribonucleic acid DNA Dormancy GA signaling Gene expression Gene Expression Regulation, Plant Germination Gibberellins Light Metabolism Photoreceptors phyB Phytochrome B Phytochrome B - genetics Phytochrome B - metabolism Plant Dormancy Plant growth substances Protein Binding protein stability Regulatory mechanisms (biology) Reverse Transcriptase Polymerase Chain Reaction RNA, Plant seed germination Seeds Sequence Analysis, RNA Signaling Stability Transcription Transcription Factors - genetics Transcription Factors - metabolism Transcription, Genetic Ubiquitin Ubiquitin-protein ligase |
title | Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20between%20REVEILLE1%20and%20RGA-LIKE2%20regulates%20seed%20dormancy%20and%20germination%20in%20Arabidopsis&rft.jtitle=The%20New%20phytologist&rft.au=Yang,%20Liwen&rft.date=2020-02-01&rft.volume=225&rft.issue=4&rft.spage=1593&rft.epage=1605&rft.pages=1593-1605&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16236&rft_dat=%3Cjstor_proqu%3E26896779%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430028431&rft_id=info:pmid/31580487&rft_jstor_id=26896779&rfr_iscdi=true |