Dual‐Additive Assisted Chemical Vapor Deposition for the Growth of Mn‐Doped 2D MoS2 with Tunable Electronic Properties

Doping of bulk silicon and III–V materials has paved the foundation of the current semiconductor industry. Controlled doping of 2D semiconductors, which can also be used to tune their bandgap and type of carrier thus changing their electronic, optical, and catalytic properties, remains challenging....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-04, Vol.16 (15), p.e1903181-n/a
Hauptverfasser: Cai, Zhengyang, Shen, Tianze, Zhu, Qi, Feng, Simin, Yu, Qiangmin, Liu, Jiaman, Tang, Lei, Zhao, Yue, Wang, Jiangwei, Liu, Bilu, Cheng, Hui‐Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 15
container_start_page e1903181
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 16
creator Cai, Zhengyang
Shen, Tianze
Zhu, Qi
Feng, Simin
Yu, Qiangmin
Liu, Jiaman
Tang, Lei
Zhao, Yue
Wang, Jiangwei
Liu, Bilu
Cheng, Hui‐Ming
description Doping of bulk silicon and III–V materials has paved the foundation of the current semiconductor industry. Controlled doping of 2D semiconductors, which can also be used to tune their bandgap and type of carrier thus changing their electronic, optical, and catalytic properties, remains challenging. Here the substitutional doping of nonlike element dopant (Mn) at the Mo sites of 2D MoS2 is reported to tune its electronic and catalytic properties. The key for the successful incorporation of Mn into the MoS2 lattice stems from the development of a new growth technology called dual‐additive chemical vapor deposition. First, the addition of a MnO2 additive to the MoS2 growth process reshapes the morphology and increases lateral size of Mn‐doped MoS2. Second, a NaCl additive helps in promoting the substitutional doping and increases the concentration of Mn dopant to 1.7 at%. Because Mn has more valance electrons than Mo, its doping into MoS2 shifts the Fermi level toward the conduction band, resulting in improved electrical contact in field effect transistors. Mn doping also increases the hydrogen evolution activity of MoS2 electrocatalysts. This work provides a growth method for doping nonlike elements into 2D MoS2 and potentially many other 2D materials to modify their properties. A dual‐additive chemical vapor deposition method achieves the growth of large lateral size 2D MoS2 substitutionally doped with Mn. The doping of Mn on the Mo sites in MoS2 is confirmed by scanning transmission electron microscopy imaging and various spectroscopic characterizations. As a result, the Mn‐doped MoS2 exhibits improved electrical contact and better hydrogen evolution reaction activity.
doi_str_mv 10.1002/smll.201903181
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2300186542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390489584</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2661-62133111be24a563dd2528aee0c6669535e03dabfc91a72c8043a9dc2814c9963</originalsourceid><addsrcrecordid>eNpd0cFKAzEQBuBFFNTq1XPAi5dqJtmNm2NptQotClWvS5qdpZHsZk12LXryEXxGn8SUSg-eJkO-GQb-JDkDegmUsqtQW3vJKEjKIYe95AgE8KHImdzfvYEeJschvNJoWHp9lHxOemV_vr5HZWk6845kFIIJHZZkvMLaaGXJi2qdJxNsXYjENaSKbbdCMvVu3a2Iq8i8iSsmro1jbELmbsHI2sSvp75RS4vkxqLuvGuMJo8-Mt8ZDCfJQaVswNO_Okieb2-exnfD2cP0fjyaDVsmBAwFA84BYIksVZngZckylitEqoUQMuMZUl6qZaUlqGumc5pyJUvNcki1lIIPkovt3ta7tx5DV9QmaLRWNej6UDBOKeQiS1mk5__oq-t9E6-LStI0l1meRiW3am0sfhStN7XyHwXQYpNDscmh2OVQLOaz2a7jv6q8f4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390489584</pqid></control><display><type>article</type><title>Dual‐Additive Assisted Chemical Vapor Deposition for the Growth of Mn‐Doped 2D MoS2 with Tunable Electronic Properties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cai, Zhengyang ; Shen, Tianze ; Zhu, Qi ; Feng, Simin ; Yu, Qiangmin ; Liu, Jiaman ; Tang, Lei ; Zhao, Yue ; Wang, Jiangwei ; Liu, Bilu ; Cheng, Hui‐Ming</creator><creatorcontrib>Cai, Zhengyang ; Shen, Tianze ; Zhu, Qi ; Feng, Simin ; Yu, Qiangmin ; Liu, Jiaman ; Tang, Lei ; Zhao, Yue ; Wang, Jiangwei ; Liu, Bilu ; Cheng, Hui‐Ming</creatorcontrib><description>Doping of bulk silicon and III–V materials has paved the foundation of the current semiconductor industry. Controlled doping of 2D semiconductors, which can also be used to tune their bandgap and type of carrier thus changing their electronic, optical, and catalytic properties, remains challenging. Here the substitutional doping of nonlike element dopant (Mn) at the Mo sites of 2D MoS2 is reported to tune its electronic and catalytic properties. The key for the successful incorporation of Mn into the MoS2 lattice stems from the development of a new growth technology called dual‐additive chemical vapor deposition. First, the addition of a MnO2 additive to the MoS2 growth process reshapes the morphology and increases lateral size of Mn‐doped MoS2. Second, a NaCl additive helps in promoting the substitutional doping and increases the concentration of Mn dopant to 1.7 at%. Because Mn has more valance electrons than Mo, its doping into MoS2 shifts the Fermi level toward the conduction band, resulting in improved electrical contact in field effect transistors. Mn doping also increases the hydrogen evolution activity of MoS2 electrocatalysts. This work provides a growth method for doping nonlike elements into 2D MoS2 and potentially many other 2D materials to modify their properties. A dual‐additive chemical vapor deposition method achieves the growth of large lateral size 2D MoS2 substitutionally doped with Mn. The doping of Mn on the Mo sites in MoS2 is confirmed by scanning transmission electron microscopy imaging and various spectroscopic characterizations. As a result, the Mn‐doped MoS2 exhibits improved electrical contact and better hydrogen evolution reaction activity.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201903181</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemical vapor deposition ; Conduction bands ; Dopants ; Doping ; dual‐additive chemical vapor deposition ; Electric contacts ; Electrocatalysts ; electronic properties ; Field effect transistors ; Hydrogen evolution ; hydrogen evolution reaction ; Manganese dioxide ; Molybdenum disulfide ; Morphology ; MoS 2 ; Nanotechnology ; Optical properties ; Semiconductor devices ; Two dimensional materials</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-04, Vol.16 (15), p.e1903181-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5387-4241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201903181$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201903181$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Cai, Zhengyang</creatorcontrib><creatorcontrib>Shen, Tianze</creatorcontrib><creatorcontrib>Zhu, Qi</creatorcontrib><creatorcontrib>Feng, Simin</creatorcontrib><creatorcontrib>Yu, Qiangmin</creatorcontrib><creatorcontrib>Liu, Jiaman</creatorcontrib><creatorcontrib>Tang, Lei</creatorcontrib><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Wang, Jiangwei</creatorcontrib><creatorcontrib>Liu, Bilu</creatorcontrib><creatorcontrib>Cheng, Hui‐Ming</creatorcontrib><title>Dual‐Additive Assisted Chemical Vapor Deposition for the Growth of Mn‐Doped 2D MoS2 with Tunable Electronic Properties</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Doping of bulk silicon and III–V materials has paved the foundation of the current semiconductor industry. Controlled doping of 2D semiconductors, which can also be used to tune their bandgap and type of carrier thus changing their electronic, optical, and catalytic properties, remains challenging. Here the substitutional doping of nonlike element dopant (Mn) at the Mo sites of 2D MoS2 is reported to tune its electronic and catalytic properties. The key for the successful incorporation of Mn into the MoS2 lattice stems from the development of a new growth technology called dual‐additive chemical vapor deposition. First, the addition of a MnO2 additive to the MoS2 growth process reshapes the morphology and increases lateral size of Mn‐doped MoS2. Second, a NaCl additive helps in promoting the substitutional doping and increases the concentration of Mn dopant to 1.7 at%. Because Mn has more valance electrons than Mo, its doping into MoS2 shifts the Fermi level toward the conduction band, resulting in improved electrical contact in field effect transistors. Mn doping also increases the hydrogen evolution activity of MoS2 electrocatalysts. This work provides a growth method for doping nonlike elements into 2D MoS2 and potentially many other 2D materials to modify their properties. A dual‐additive chemical vapor deposition method achieves the growth of large lateral size 2D MoS2 substitutionally doped with Mn. The doping of Mn on the Mo sites in MoS2 is confirmed by scanning transmission electron microscopy imaging and various spectroscopic characterizations. As a result, the Mn‐doped MoS2 exhibits improved electrical contact and better hydrogen evolution reaction activity.</description><subject>Chemical vapor deposition</subject><subject>Conduction bands</subject><subject>Dopants</subject><subject>Doping</subject><subject>dual‐additive chemical vapor deposition</subject><subject>Electric contacts</subject><subject>Electrocatalysts</subject><subject>electronic properties</subject><subject>Field effect transistors</subject><subject>Hydrogen evolution</subject><subject>hydrogen evolution reaction</subject><subject>Manganese dioxide</subject><subject>Molybdenum disulfide</subject><subject>Morphology</subject><subject>MoS 2</subject><subject>Nanotechnology</subject><subject>Optical properties</subject><subject>Semiconductor devices</subject><subject>Two dimensional materials</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0cFKAzEQBuBFFNTq1XPAi5dqJtmNm2NptQotClWvS5qdpZHsZk12LXryEXxGn8SUSg-eJkO-GQb-JDkDegmUsqtQW3vJKEjKIYe95AgE8KHImdzfvYEeJschvNJoWHp9lHxOemV_vr5HZWk6845kFIIJHZZkvMLaaGXJi2qdJxNsXYjENaSKbbdCMvVu3a2Iq8i8iSsmro1jbELmbsHI2sSvp75RS4vkxqLuvGuMJo8-Mt8ZDCfJQaVswNO_Okieb2-exnfD2cP0fjyaDVsmBAwFA84BYIksVZngZckylitEqoUQMuMZUl6qZaUlqGumc5pyJUvNcki1lIIPkovt3ta7tx5DV9QmaLRWNej6UDBOKeQiS1mk5__oq-t9E6-LStI0l1meRiW3am0sfhStN7XyHwXQYpNDscmh2OVQLOaz2a7jv6q8f4Q</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Cai, Zhengyang</creator><creator>Shen, Tianze</creator><creator>Zhu, Qi</creator><creator>Feng, Simin</creator><creator>Yu, Qiangmin</creator><creator>Liu, Jiaman</creator><creator>Tang, Lei</creator><creator>Zhao, Yue</creator><creator>Wang, Jiangwei</creator><creator>Liu, Bilu</creator><creator>Cheng, Hui‐Ming</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5387-4241</orcidid></search><sort><creationdate>20200401</creationdate><title>Dual‐Additive Assisted Chemical Vapor Deposition for the Growth of Mn‐Doped 2D MoS2 with Tunable Electronic Properties</title><author>Cai, Zhengyang ; Shen, Tianze ; Zhu, Qi ; Feng, Simin ; Yu, Qiangmin ; Liu, Jiaman ; Tang, Lei ; Zhao, Yue ; Wang, Jiangwei ; Liu, Bilu ; Cheng, Hui‐Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2661-62133111be24a563dd2528aee0c6669535e03dabfc91a72c8043a9dc2814c9963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical vapor deposition</topic><topic>Conduction bands</topic><topic>Dopants</topic><topic>Doping</topic><topic>dual‐additive chemical vapor deposition</topic><topic>Electric contacts</topic><topic>Electrocatalysts</topic><topic>electronic properties</topic><topic>Field effect transistors</topic><topic>Hydrogen evolution</topic><topic>hydrogen evolution reaction</topic><topic>Manganese dioxide</topic><topic>Molybdenum disulfide</topic><topic>Morphology</topic><topic>MoS 2</topic><topic>Nanotechnology</topic><topic>Optical properties</topic><topic>Semiconductor devices</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Zhengyang</creatorcontrib><creatorcontrib>Shen, Tianze</creatorcontrib><creatorcontrib>Zhu, Qi</creatorcontrib><creatorcontrib>Feng, Simin</creatorcontrib><creatorcontrib>Yu, Qiangmin</creatorcontrib><creatorcontrib>Liu, Jiaman</creatorcontrib><creatorcontrib>Tang, Lei</creatorcontrib><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Wang, Jiangwei</creatorcontrib><creatorcontrib>Liu, Bilu</creatorcontrib><creatorcontrib>Cheng, Hui‐Ming</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Zhengyang</au><au>Shen, Tianze</au><au>Zhu, Qi</au><au>Feng, Simin</au><au>Yu, Qiangmin</au><au>Liu, Jiaman</au><au>Tang, Lei</au><au>Zhao, Yue</au><au>Wang, Jiangwei</au><au>Liu, Bilu</au><au>Cheng, Hui‐Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual‐Additive Assisted Chemical Vapor Deposition for the Growth of Mn‐Doped 2D MoS2 with Tunable Electronic Properties</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>16</volume><issue>15</issue><spage>e1903181</spage><epage>n/a</epage><pages>e1903181-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Doping of bulk silicon and III–V materials has paved the foundation of the current semiconductor industry. Controlled doping of 2D semiconductors, which can also be used to tune their bandgap and type of carrier thus changing their electronic, optical, and catalytic properties, remains challenging. Here the substitutional doping of nonlike element dopant (Mn) at the Mo sites of 2D MoS2 is reported to tune its electronic and catalytic properties. The key for the successful incorporation of Mn into the MoS2 lattice stems from the development of a new growth technology called dual‐additive chemical vapor deposition. First, the addition of a MnO2 additive to the MoS2 growth process reshapes the morphology and increases lateral size of Mn‐doped MoS2. Second, a NaCl additive helps in promoting the substitutional doping and increases the concentration of Mn dopant to 1.7 at%. Because Mn has more valance electrons than Mo, its doping into MoS2 shifts the Fermi level toward the conduction band, resulting in improved electrical contact in field effect transistors. Mn doping also increases the hydrogen evolution activity of MoS2 electrocatalysts. This work provides a growth method for doping nonlike elements into 2D MoS2 and potentially many other 2D materials to modify their properties. A dual‐additive chemical vapor deposition method achieves the growth of large lateral size 2D MoS2 substitutionally doped with Mn. The doping of Mn on the Mo sites in MoS2 is confirmed by scanning transmission electron microscopy imaging and various spectroscopic characterizations. As a result, the Mn‐doped MoS2 exhibits improved electrical contact and better hydrogen evolution reaction activity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.201903181</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5387-4241</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2020-04, Vol.16 (15), p.e1903181-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2300186542
source Wiley Online Library Journals Frontfile Complete
subjects Chemical vapor deposition
Conduction bands
Dopants
Doping
dual‐additive chemical vapor deposition
Electric contacts
Electrocatalysts
electronic properties
Field effect transistors
Hydrogen evolution
hydrogen evolution reaction
Manganese dioxide
Molybdenum disulfide
Morphology
MoS 2
Nanotechnology
Optical properties
Semiconductor devices
Two dimensional materials
title Dual‐Additive Assisted Chemical Vapor Deposition for the Growth of Mn‐Doped 2D MoS2 with Tunable Electronic Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%E2%80%90Additive%20Assisted%20Chemical%20Vapor%20Deposition%20for%20the%20Growth%20of%20Mn%E2%80%90Doped%202D%20MoS2%20with%20Tunable%20Electronic%20Properties&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Cai,%20Zhengyang&rft.date=2020-04-01&rft.volume=16&rft.issue=15&rft.spage=e1903181&rft.epage=n/a&rft.pages=e1903181-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201903181&rft_dat=%3Cproquest_wiley%3E2390489584%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390489584&rft_id=info:pmid/&rfr_iscdi=true