tuxnet: a simple interface to process RNA sequencing data and infer gene regulatory networks

Summary Predicting gene regulatory networks (GRNs) from expression profiles is a common approach for identifying important biological regulators. Despite the increased use of inference methods, existing computational approaches often do not integrate RNA‐sequencing data analysis, are not automated o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2020-02, Vol.101 (3), p.716-730
Hauptverfasser: Spurney, Ryan J., Van den Broeck, Lisa, Clark, Natalie M., Fisher, Adam P., de Luis Balaguer, Maria A., Sozzani, Rosangela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 730
container_issue 3
container_start_page 716
container_title The Plant journal : for cell and molecular biology
container_volume 101
creator Spurney, Ryan J.
Van den Broeck, Lisa
Clark, Natalie M.
Fisher, Adam P.
de Luis Balaguer, Maria A.
Sozzani, Rosangela
description Summary Predicting gene regulatory networks (GRNs) from expression profiles is a common approach for identifying important biological regulators. Despite the increased use of inference methods, existing computational approaches often do not integrate RNA‐sequencing data analysis, are not automated or are restricted to users with bioinformatics backgrounds. To address these limitations, we developed tuxnet, a user‐friendly platform that can process raw RNA‐sequencing data from any organism with an existing reference genome using a modified tuxedo pipeline (hisat 2 + cufflinks package) and infer GRNs from these processed data. tuxnet is implemented as a graphical user interface and can mine gene regulations, either by applying a dynamic Bayesian network (DBN) inference algorithm, genist, or a regression tree‐based pipeline, rtp‐star. We obtained time‐course expression data of a PERIANTHIA (PAN) inducible line and inferred a GRN using genist to illustrate the use of tuxnet while gaining insight into the regulations downstream of the Arabidopsis root stem cell regulator PAN. Using rtp‐star, we inferred the network of ATHB13, a downstream gene of PAN, for which we obtained wild‐type and mutant expression profiles. Additionally, we generated two networks using temporal data from developmental leaf data and spatial data from root cell‐type data to highlight the use of tuxnet to form new testable hypotheses from previously explored data. Our case studies feature the versatility of tuxnet when using different types of gene expression data to infer networks and its accessibility as a pipeline for non‐bioinformaticians to analyze transcriptome data, predict causal regulations, assess network topology and identify key regulators. Significance Statement tuxnet offers a simple integrated interface for both computational and non‐computational biologists to perform RNA‐seq data analysis and infer GRNs from RNA‐seq data (https://rspurney.github.io/TuxNet/). By implementing network inference techniques, tuxnet allows for the prediction of causal regulations with high confidence and thus is a practical tool to evaluate and handle transcriptome data.
doi_str_mv 10.1111/tpj.14558
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2299775378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347486293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3888-f857657cfd0913c96bdaefe8dafdc0abae9b0374809674307108108236dbd0ce3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobk4v_AMS8EYvuiVN26TejeEnQ0UmeCGENDkdnV1bk5a5f2900wvBcCA3D895z4vQMSVD6t-obRZDGsWx2EF9ypI4YJS97KI-SRMS8IiGPXTg3IIQylkS7aMeozGnoeB99Np2HxW0F1hhVyybEnBRtWBzpQG3NW5srcE5_HQ_xg7eO6h0Uc2xUa3CqjIezsHiOVSALcy7UrW1XWMvXNX2zR2ivVyVDo62_wA9X13OJjfB9OH6djKeBpoJIYJcxDyJuc4NSSnTaZIZBTkIo3KjicoUpBlhPBL-Hh4xwikRfkKWmMwQDWyAzjZeH9dndK1cFk5DWaoK6s7JMExTzmPGhUdP_6CLurOVTydDFvkdSZgyT51vKG1r5yzksrHFUtm1pER-VS595fK7cs-ebI1dtgTzS_507IHRBlgVJaz_N8nZ491G-QnQ14rs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347486293</pqid></control><display><type>article</type><title>tuxnet: a simple interface to process RNA sequencing data and infer gene regulatory networks</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Spurney, Ryan J. ; Van den Broeck, Lisa ; Clark, Natalie M. ; Fisher, Adam P. ; de Luis Balaguer, Maria A. ; Sozzani, Rosangela</creator><creatorcontrib>Spurney, Ryan J. ; Van den Broeck, Lisa ; Clark, Natalie M. ; Fisher, Adam P. ; de Luis Balaguer, Maria A. ; Sozzani, Rosangela</creatorcontrib><description>Summary Predicting gene regulatory networks (GRNs) from expression profiles is a common approach for identifying important biological regulators. Despite the increased use of inference methods, existing computational approaches often do not integrate RNA‐sequencing data analysis, are not automated or are restricted to users with bioinformatics backgrounds. To address these limitations, we developed tuxnet, a user‐friendly platform that can process raw RNA‐sequencing data from any organism with an existing reference genome using a modified tuxedo pipeline (hisat 2 + cufflinks package) and infer GRNs from these processed data. tuxnet is implemented as a graphical user interface and can mine gene regulations, either by applying a dynamic Bayesian network (DBN) inference algorithm, genist, or a regression tree‐based pipeline, rtp‐star. We obtained time‐course expression data of a PERIANTHIA (PAN) inducible line and inferred a GRN using genist to illustrate the use of tuxnet while gaining insight into the regulations downstream of the Arabidopsis root stem cell regulator PAN. Using rtp‐star, we inferred the network of ATHB13, a downstream gene of PAN, for which we obtained wild‐type and mutant expression profiles. Additionally, we generated two networks using temporal data from developmental leaf data and spatial data from root cell‐type data to highlight the use of tuxnet to form new testable hypotheses from previously explored data. Our case studies feature the versatility of tuxnet when using different types of gene expression data to infer networks and its accessibility as a pipeline for non‐bioinformaticians to analyze transcriptome data, predict causal regulations, assess network topology and identify key regulators. Significance Statement tuxnet offers a simple integrated interface for both computational and non‐computational biologists to perform RNA‐seq data analysis and infer GRNs from RNA‐seq data (https://rspurney.github.io/TuxNet/). By implementing network inference techniques, tuxnet allows for the prediction of causal regulations with high confidence and thus is a practical tool to evaluate and handle transcriptome data.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.14558</identifier><identifier>PMID: 31571287</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Arabidopsis - genetics ; Arabidopsis thaliana ; Bayes Theorem ; Bayesian analysis ; Bioinformatics ; Computational Biology ; Computer applications ; Computer graphics ; Data analysis ; Gene expression ; Gene Expression Regulation, Plant ; gene regulatory network inference ; Gene Regulatory Networks - genetics ; Gene sequencing ; Genome, Plant - genetics ; Genomes ; Graphical user interface ; Identification methods ; Inference ; Mutants ; Network topologies ; Networks ; Pipelines ; Regression analysis ; Regulations ; Ribonucleic acid ; RNA ; RNA sequencing processing ; Sequence Analysis, RNA ; Spatial data ; stem cell maintenance ; Stem cells ; technical advance ; Topology ; Transcriptome</subject><ispartof>The Plant journal : for cell and molecular biology, 2020-02, Vol.101 (3), p.716-730</ispartof><rights>2019 The Authors The Plant Journal © 2019 John Wiley &amp; Sons Ltd</rights><rights>2019 The Authors The Plant Journal © 2019 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3888-f857657cfd0913c96bdaefe8dafdc0abae9b0374809674307108108236dbd0ce3</citedby><cites>FETCH-LOGICAL-c3888-f857657cfd0913c96bdaefe8dafdc0abae9b0374809674307108108236dbd0ce3</cites><orcidid>0000-0003-0226-0757 ; 0000-0003-3316-2367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.14558$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.14558$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31571287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spurney, Ryan J.</creatorcontrib><creatorcontrib>Van den Broeck, Lisa</creatorcontrib><creatorcontrib>Clark, Natalie M.</creatorcontrib><creatorcontrib>Fisher, Adam P.</creatorcontrib><creatorcontrib>de Luis Balaguer, Maria A.</creatorcontrib><creatorcontrib>Sozzani, Rosangela</creatorcontrib><title>tuxnet: a simple interface to process RNA sequencing data and infer gene regulatory networks</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary Predicting gene regulatory networks (GRNs) from expression profiles is a common approach for identifying important biological regulators. Despite the increased use of inference methods, existing computational approaches often do not integrate RNA‐sequencing data analysis, are not automated or are restricted to users with bioinformatics backgrounds. To address these limitations, we developed tuxnet, a user‐friendly platform that can process raw RNA‐sequencing data from any organism with an existing reference genome using a modified tuxedo pipeline (hisat 2 + cufflinks package) and infer GRNs from these processed data. tuxnet is implemented as a graphical user interface and can mine gene regulations, either by applying a dynamic Bayesian network (DBN) inference algorithm, genist, or a regression tree‐based pipeline, rtp‐star. We obtained time‐course expression data of a PERIANTHIA (PAN) inducible line and inferred a GRN using genist to illustrate the use of tuxnet while gaining insight into the regulations downstream of the Arabidopsis root stem cell regulator PAN. Using rtp‐star, we inferred the network of ATHB13, a downstream gene of PAN, for which we obtained wild‐type and mutant expression profiles. Additionally, we generated two networks using temporal data from developmental leaf data and spatial data from root cell‐type data to highlight the use of tuxnet to form new testable hypotheses from previously explored data. Our case studies feature the versatility of tuxnet when using different types of gene expression data to infer networks and its accessibility as a pipeline for non‐bioinformaticians to analyze transcriptome data, predict causal regulations, assess network topology and identify key regulators. Significance Statement tuxnet offers a simple integrated interface for both computational and non‐computational biologists to perform RNA‐seq data analysis and infer GRNs from RNA‐seq data (https://rspurney.github.io/TuxNet/). By implementing network inference techniques, tuxnet allows for the prediction of causal regulations with high confidence and thus is a practical tool to evaluate and handle transcriptome data.</description><subject>Algorithms</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bioinformatics</subject><subject>Computational Biology</subject><subject>Computer applications</subject><subject>Computer graphics</subject><subject>Data analysis</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>gene regulatory network inference</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Gene sequencing</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Graphical user interface</subject><subject>Identification methods</subject><subject>Inference</subject><subject>Mutants</subject><subject>Network topologies</subject><subject>Networks</subject><subject>Pipelines</subject><subject>Regression analysis</subject><subject>Regulations</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing processing</subject><subject>Sequence Analysis, RNA</subject><subject>Spatial data</subject><subject>stem cell maintenance</subject><subject>Stem cells</subject><subject>technical advance</subject><subject>Topology</subject><subject>Transcriptome</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kF1LwzAUhoMobk4v_AMS8EYvuiVN26TejeEnQ0UmeCGENDkdnV1bk5a5f2900wvBcCA3D895z4vQMSVD6t-obRZDGsWx2EF9ypI4YJS97KI-SRMS8IiGPXTg3IIQylkS7aMeozGnoeB99Np2HxW0F1hhVyybEnBRtWBzpQG3NW5srcE5_HQ_xg7eO6h0Uc2xUa3CqjIezsHiOVSALcy7UrW1XWMvXNX2zR2ivVyVDo62_wA9X13OJjfB9OH6djKeBpoJIYJcxDyJuc4NSSnTaZIZBTkIo3KjicoUpBlhPBL-Hh4xwikRfkKWmMwQDWyAzjZeH9dndK1cFk5DWaoK6s7JMExTzmPGhUdP_6CLurOVTydDFvkdSZgyT51vKG1r5yzksrHFUtm1pER-VS595fK7cs-ebI1dtgTzS_507IHRBlgVJaz_N8nZ491G-QnQ14rs</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Spurney, Ryan J.</creator><creator>Van den Broeck, Lisa</creator><creator>Clark, Natalie M.</creator><creator>Fisher, Adam P.</creator><creator>de Luis Balaguer, Maria A.</creator><creator>Sozzani, Rosangela</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0226-0757</orcidid><orcidid>https://orcid.org/0000-0003-3316-2367</orcidid></search><sort><creationdate>202002</creationdate><title>tuxnet: a simple interface to process RNA sequencing data and infer gene regulatory networks</title><author>Spurney, Ryan J. ; Van den Broeck, Lisa ; Clark, Natalie M. ; Fisher, Adam P. ; de Luis Balaguer, Maria A. ; Sozzani, Rosangela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3888-f857657cfd0913c96bdaefe8dafdc0abae9b0374809674307108108236dbd0ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bioinformatics</topic><topic>Computational Biology</topic><topic>Computer applications</topic><topic>Computer graphics</topic><topic>Data analysis</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>gene regulatory network inference</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Gene sequencing</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Graphical user interface</topic><topic>Identification methods</topic><topic>Inference</topic><topic>Mutants</topic><topic>Network topologies</topic><topic>Networks</topic><topic>Pipelines</topic><topic>Regression analysis</topic><topic>Regulations</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing processing</topic><topic>Sequence Analysis, RNA</topic><topic>Spatial data</topic><topic>stem cell maintenance</topic><topic>Stem cells</topic><topic>technical advance</topic><topic>Topology</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spurney, Ryan J.</creatorcontrib><creatorcontrib>Van den Broeck, Lisa</creatorcontrib><creatorcontrib>Clark, Natalie M.</creatorcontrib><creatorcontrib>Fisher, Adam P.</creatorcontrib><creatorcontrib>de Luis Balaguer, Maria A.</creatorcontrib><creatorcontrib>Sozzani, Rosangela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spurney, Ryan J.</au><au>Van den Broeck, Lisa</au><au>Clark, Natalie M.</au><au>Fisher, Adam P.</au><au>de Luis Balaguer, Maria A.</au><au>Sozzani, Rosangela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>tuxnet: a simple interface to process RNA sequencing data and infer gene regulatory networks</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2020-02</date><risdate>2020</risdate><volume>101</volume><issue>3</issue><spage>716</spage><epage>730</epage><pages>716-730</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary Predicting gene regulatory networks (GRNs) from expression profiles is a common approach for identifying important biological regulators. Despite the increased use of inference methods, existing computational approaches often do not integrate RNA‐sequencing data analysis, are not automated or are restricted to users with bioinformatics backgrounds. To address these limitations, we developed tuxnet, a user‐friendly platform that can process raw RNA‐sequencing data from any organism with an existing reference genome using a modified tuxedo pipeline (hisat 2 + cufflinks package) and infer GRNs from these processed data. tuxnet is implemented as a graphical user interface and can mine gene regulations, either by applying a dynamic Bayesian network (DBN) inference algorithm, genist, or a regression tree‐based pipeline, rtp‐star. We obtained time‐course expression data of a PERIANTHIA (PAN) inducible line and inferred a GRN using genist to illustrate the use of tuxnet while gaining insight into the regulations downstream of the Arabidopsis root stem cell regulator PAN. Using rtp‐star, we inferred the network of ATHB13, a downstream gene of PAN, for which we obtained wild‐type and mutant expression profiles. Additionally, we generated two networks using temporal data from developmental leaf data and spatial data from root cell‐type data to highlight the use of tuxnet to form new testable hypotheses from previously explored data. Our case studies feature the versatility of tuxnet when using different types of gene expression data to infer networks and its accessibility as a pipeline for non‐bioinformaticians to analyze transcriptome data, predict causal regulations, assess network topology and identify key regulators. Significance Statement tuxnet offers a simple integrated interface for both computational and non‐computational biologists to perform RNA‐seq data analysis and infer GRNs from RNA‐seq data (https://rspurney.github.io/TuxNet/). By implementing network inference techniques, tuxnet allows for the prediction of causal regulations with high confidence and thus is a practical tool to evaluate and handle transcriptome data.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>31571287</pmid><doi>10.1111/tpj.14558</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0226-0757</orcidid><orcidid>https://orcid.org/0000-0003-3316-2367</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2020-02, Vol.101 (3), p.716-730
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_2299775378
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Arabidopsis - genetics
Arabidopsis thaliana
Bayes Theorem
Bayesian analysis
Bioinformatics
Computational Biology
Computer applications
Computer graphics
Data analysis
Gene expression
Gene Expression Regulation, Plant
gene regulatory network inference
Gene Regulatory Networks - genetics
Gene sequencing
Genome, Plant - genetics
Genomes
Graphical user interface
Identification methods
Inference
Mutants
Network topologies
Networks
Pipelines
Regression analysis
Regulations
Ribonucleic acid
RNA
RNA sequencing processing
Sequence Analysis, RNA
Spatial data
stem cell maintenance
Stem cells
technical advance
Topology
Transcriptome
title tuxnet: a simple interface to process RNA sequencing data and infer gene regulatory networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=tuxnet:%20a%20simple%20interface%20to%20process%20RNA%20sequencing%20data%20and%20infer%20gene%20regulatory%20networks&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Spurney,%20Ryan%20J.&rft.date=2020-02&rft.volume=101&rft.issue=3&rft.spage=716&rft.epage=730&rft.pages=716-730&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.14558&rft_dat=%3Cproquest_cross%3E2347486293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347486293&rft_id=info:pmid/31571287&rfr_iscdi=true