Gold nanoparticles for the in situ polymerization of near-infrared responsive hydrogels based on fibrin
Non-invasiveness and relative safety of photothermal therapy, which enables local hyperthermia of target tissues using a near infrared (NIR) laser, has attracted increasing interest. Due to their biocompatibility, amenability of synthesis and functionalization, gold nanoparticles have been investiga...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2019-12, Vol.100, p.306-315 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 315 |
---|---|
container_issue | |
container_start_page | 306 |
container_title | Acta biomaterialia |
container_volume | 100 |
creator | Escudero-Duch, Clara Martin-Saavedra, Francisco Prieto, Martin Sanchez-Casanova, Silvia Lopez, Daniel Sebastian, Victor Arruebo, Manuel Santamaria, Jesus Vilaboa, Nuria |
description | Non-invasiveness and relative safety of photothermal therapy, which enables local hyperthermia of target tissues using a near infrared (NIR) laser, has attracted increasing interest. Due to their biocompatibility, amenability of synthesis and functionalization, gold nanoparticles have been investigated as therapeutic photothermal agents. In this work, hollow gold nanoparticles (HGNP) were coated with poly-l-lysine through the use of COOH-Poly(ethylene glycol)-SH as a covalent linker. The functionalized HGNP, which peak their surface plasmon resonance at 800 nm, can bind thrombin. Thrombin-conjugated HGNP conduct in situ fibrin polymerization, facilitating the process of generating photothermal matrices. Interestingly, the metallic core of thrombin-loaded HGNP fragmentates at physiological temperature. During polymerization process, matrices prepared with thrombin-loaded HGNP were loaded with genetically-modified stem cells that harbour a heat-activated and ligand-dependent gene switch for regulating transgene expression. NIR laser irradiation of resulting cell constructs in the presence of ligand successfully triggered transgene expression in vitro and in vivo.
Current technological development allows synthesis of gold nanoparticles (GNP) in a wide range of shapes and sizes, consistently and at scale. GNP, stable and easily functionalized, show low cytotoxicity and high biocompatibility. Allied to that, GNP present optoelectronic properties that have been exploited in a range of biomedical applications. Following a layer-by-layer functionalization approach, we prepared hollow GNP coated with a positively charged copolymer that enabled thrombin conjugation. The resulting nanomaterial efficiently catalyzed the formation of fibrin hydrogels which convert energy of the near infrared (NIR) into heat. The resulting NIR-responsive hydrogels can function as scaffolding for cells capable of controlled gene expression triggered by optical hyperthermia, thus allowing the deployment of therapeutic gene products in desired spatiotemporal frameworks.
[Display omitted] |
doi_str_mv | 10.1016/j.actbio.2019.09.040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2299772864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706119306610</els_id><sourcerecordid>2299772864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-127316f6790ccf597a8b10abd494836cd8284817e04efb097f4b2f31a10825933</originalsourceid><addsrcrecordid>eNp9kV1rFTEQhoMotlb_gUjAG2_2mK_dJDeCFG2Fgjd6HbLZSZvDnmSd7BaOv96UU73wojAwA_PMB-9LyFvOdpzx4eN-58M6prITjNsda6HYM3LOjTad7gfzvNVaiU6zgZ-RV7XuGZOGC_OSnEneAKP7c3J7VeaJZp_L4nFNYYZKY0G63gFNmda0bnQp8_EAmH77NZVMS6QZPHYpR_QIE0WoS8k13QO9O05YbmGudPS1tRoe04gpvyYvop8rvHnMF-Tn1y8_Lq-7m-9X3y4_33RBWbl2XGjJhzhoy0KIvdXejJz5cVJWGTmEyQijDNfAFMSRWR3VKKLknjMjeivlBflw2rtg-bVBXd0h1QDz7DOUrTohrNVamEE19P1_6L5smNt3TkhhNbdDzxulTlTAUitCdAumg8ej48w9GOH27mSEezDCsRaKtbF3j8u38QDTv6G_yjfg0wloYsF9AnQ1JMgBpoQQVjeV9PSFPy0km2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329719651</pqid></control><display><type>article</type><title>Gold nanoparticles for the in situ polymerization of near-infrared responsive hydrogels based on fibrin</title><source>Access via ScienceDirect (Elsevier)</source><creator>Escudero-Duch, Clara ; Martin-Saavedra, Francisco ; Prieto, Martin ; Sanchez-Casanova, Silvia ; Lopez, Daniel ; Sebastian, Victor ; Arruebo, Manuel ; Santamaria, Jesus ; Vilaboa, Nuria</creator><creatorcontrib>Escudero-Duch, Clara ; Martin-Saavedra, Francisco ; Prieto, Martin ; Sanchez-Casanova, Silvia ; Lopez, Daniel ; Sebastian, Victor ; Arruebo, Manuel ; Santamaria, Jesus ; Vilaboa, Nuria</creatorcontrib><description>Non-invasiveness and relative safety of photothermal therapy, which enables local hyperthermia of target tissues using a near infrared (NIR) laser, has attracted increasing interest. Due to their biocompatibility, amenability of synthesis and functionalization, gold nanoparticles have been investigated as therapeutic photothermal agents. In this work, hollow gold nanoparticles (HGNP) were coated with poly-l-lysine through the use of COOH-Poly(ethylene glycol)-SH as a covalent linker. The functionalized HGNP, which peak their surface plasmon resonance at 800 nm, can bind thrombin. Thrombin-conjugated HGNP conduct in situ fibrin polymerization, facilitating the process of generating photothermal matrices. Interestingly, the metallic core of thrombin-loaded HGNP fragmentates at physiological temperature. During polymerization process, matrices prepared with thrombin-loaded HGNP were loaded with genetically-modified stem cells that harbour a heat-activated and ligand-dependent gene switch for regulating transgene expression. NIR laser irradiation of resulting cell constructs in the presence of ligand successfully triggered transgene expression in vitro and in vivo.
Current technological development allows synthesis of gold nanoparticles (GNP) in a wide range of shapes and sizes, consistently and at scale. GNP, stable and easily functionalized, show low cytotoxicity and high biocompatibility. Allied to that, GNP present optoelectronic properties that have been exploited in a range of biomedical applications. Following a layer-by-layer functionalization approach, we prepared hollow GNP coated with a positively charged copolymer that enabled thrombin conjugation. The resulting nanomaterial efficiently catalyzed the formation of fibrin hydrogels which convert energy of the near infrared (NIR) into heat. The resulting NIR-responsive hydrogels can function as scaffolding for cells capable of controlled gene expression triggered by optical hyperthermia, thus allowing the deployment of therapeutic gene products in desired spatiotemporal frameworks.
[Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2019.09.040</identifier><identifier>PMID: 31568875</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biocompatibility ; Chemical compounds ; Fibrin ; Gene expression ; Gene therapy ; Genetic modification ; Gold ; Hollow gold nanoparticles (HGNP) ; Hydrogels ; Hyperthermia ; Infrared lasers ; Irradiation ; Ligands ; Lysine ; Nanoparticles ; Near infrared (NIR) ; Pharmacology ; Poly-L-lysine ; Polyethylene glycol ; Polymerization ; Stem cells ; Surface plasmon resonance ; Thrombin</subject><ispartof>Acta biomaterialia, 2019-12, Vol.100, p.306-315</ispartof><rights>2019 Acta Materialia Inc.</rights><rights>Copyright © 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-127316f6790ccf597a8b10abd494836cd8284817e04efb097f4b2f31a10825933</citedby><cites>FETCH-LOGICAL-c493t-127316f6790ccf597a8b10abd494836cd8284817e04efb097f4b2f31a10825933</cites><orcidid>0000-0003-3165-0156 ; 0000-0002-6873-5244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2019.09.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31568875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Escudero-Duch, Clara</creatorcontrib><creatorcontrib>Martin-Saavedra, Francisco</creatorcontrib><creatorcontrib>Prieto, Martin</creatorcontrib><creatorcontrib>Sanchez-Casanova, Silvia</creatorcontrib><creatorcontrib>Lopez, Daniel</creatorcontrib><creatorcontrib>Sebastian, Victor</creatorcontrib><creatorcontrib>Arruebo, Manuel</creatorcontrib><creatorcontrib>Santamaria, Jesus</creatorcontrib><creatorcontrib>Vilaboa, Nuria</creatorcontrib><title>Gold nanoparticles for the in situ polymerization of near-infrared responsive hydrogels based on fibrin</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Non-invasiveness and relative safety of photothermal therapy, which enables local hyperthermia of target tissues using a near infrared (NIR) laser, has attracted increasing interest. Due to their biocompatibility, amenability of synthesis and functionalization, gold nanoparticles have been investigated as therapeutic photothermal agents. In this work, hollow gold nanoparticles (HGNP) were coated with poly-l-lysine through the use of COOH-Poly(ethylene glycol)-SH as a covalent linker. The functionalized HGNP, which peak their surface plasmon resonance at 800 nm, can bind thrombin. Thrombin-conjugated HGNP conduct in situ fibrin polymerization, facilitating the process of generating photothermal matrices. Interestingly, the metallic core of thrombin-loaded HGNP fragmentates at physiological temperature. During polymerization process, matrices prepared with thrombin-loaded HGNP were loaded with genetically-modified stem cells that harbour a heat-activated and ligand-dependent gene switch for regulating transgene expression. NIR laser irradiation of resulting cell constructs in the presence of ligand successfully triggered transgene expression in vitro and in vivo.
Current technological development allows synthesis of gold nanoparticles (GNP) in a wide range of shapes and sizes, consistently and at scale. GNP, stable and easily functionalized, show low cytotoxicity and high biocompatibility. Allied to that, GNP present optoelectronic properties that have been exploited in a range of biomedical applications. Following a layer-by-layer functionalization approach, we prepared hollow GNP coated with a positively charged copolymer that enabled thrombin conjugation. The resulting nanomaterial efficiently catalyzed the formation of fibrin hydrogels which convert energy of the near infrared (NIR) into heat. The resulting NIR-responsive hydrogels can function as scaffolding for cells capable of controlled gene expression triggered by optical hyperthermia, thus allowing the deployment of therapeutic gene products in desired spatiotemporal frameworks.
[Display omitted]</description><subject>Biocompatibility</subject><subject>Chemical compounds</subject><subject>Fibrin</subject><subject>Gene expression</subject><subject>Gene therapy</subject><subject>Genetic modification</subject><subject>Gold</subject><subject>Hollow gold nanoparticles (HGNP)</subject><subject>Hydrogels</subject><subject>Hyperthermia</subject><subject>Infrared lasers</subject><subject>Irradiation</subject><subject>Ligands</subject><subject>Lysine</subject><subject>Nanoparticles</subject><subject>Near infrared (NIR)</subject><subject>Pharmacology</subject><subject>Poly-L-lysine</subject><subject>Polyethylene glycol</subject><subject>Polymerization</subject><subject>Stem cells</subject><subject>Surface plasmon resonance</subject><subject>Thrombin</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rFTEQhoMotlb_gUjAG2_2mK_dJDeCFG2Fgjd6HbLZSZvDnmSd7BaOv96UU73wojAwA_PMB-9LyFvOdpzx4eN-58M6prITjNsda6HYM3LOjTad7gfzvNVaiU6zgZ-RV7XuGZOGC_OSnEneAKP7c3J7VeaJZp_L4nFNYYZKY0G63gFNmda0bnQp8_EAmH77NZVMS6QZPHYpR_QIE0WoS8k13QO9O05YbmGudPS1tRoe04gpvyYvop8rvHnMF-Tn1y8_Lq-7m-9X3y4_33RBWbl2XGjJhzhoy0KIvdXejJz5cVJWGTmEyQijDNfAFMSRWR3VKKLknjMjeivlBflw2rtg-bVBXd0h1QDz7DOUrTohrNVamEE19P1_6L5smNt3TkhhNbdDzxulTlTAUitCdAumg8ej48w9GOH27mSEezDCsRaKtbF3j8u38QDTv6G_yjfg0wloYsF9AnQ1JMgBpoQQVjeV9PSFPy0km2c</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Escudero-Duch, Clara</creator><creator>Martin-Saavedra, Francisco</creator><creator>Prieto, Martin</creator><creator>Sanchez-Casanova, Silvia</creator><creator>Lopez, Daniel</creator><creator>Sebastian, Victor</creator><creator>Arruebo, Manuel</creator><creator>Santamaria, Jesus</creator><creator>Vilaboa, Nuria</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3165-0156</orcidid><orcidid>https://orcid.org/0000-0002-6873-5244</orcidid></search><sort><creationdate>20191201</creationdate><title>Gold nanoparticles for the in situ polymerization of near-infrared responsive hydrogels based on fibrin</title><author>Escudero-Duch, Clara ; Martin-Saavedra, Francisco ; Prieto, Martin ; Sanchez-Casanova, Silvia ; Lopez, Daniel ; Sebastian, Victor ; Arruebo, Manuel ; Santamaria, Jesus ; Vilaboa, Nuria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-127316f6790ccf597a8b10abd494836cd8284817e04efb097f4b2f31a10825933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatibility</topic><topic>Chemical compounds</topic><topic>Fibrin</topic><topic>Gene expression</topic><topic>Gene therapy</topic><topic>Genetic modification</topic><topic>Gold</topic><topic>Hollow gold nanoparticles (HGNP)</topic><topic>Hydrogels</topic><topic>Hyperthermia</topic><topic>Infrared lasers</topic><topic>Irradiation</topic><topic>Ligands</topic><topic>Lysine</topic><topic>Nanoparticles</topic><topic>Near infrared (NIR)</topic><topic>Pharmacology</topic><topic>Poly-L-lysine</topic><topic>Polyethylene glycol</topic><topic>Polymerization</topic><topic>Stem cells</topic><topic>Surface plasmon resonance</topic><topic>Thrombin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escudero-Duch, Clara</creatorcontrib><creatorcontrib>Martin-Saavedra, Francisco</creatorcontrib><creatorcontrib>Prieto, Martin</creatorcontrib><creatorcontrib>Sanchez-Casanova, Silvia</creatorcontrib><creatorcontrib>Lopez, Daniel</creatorcontrib><creatorcontrib>Sebastian, Victor</creatorcontrib><creatorcontrib>Arruebo, Manuel</creatorcontrib><creatorcontrib>Santamaria, Jesus</creatorcontrib><creatorcontrib>Vilaboa, Nuria</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escudero-Duch, Clara</au><au>Martin-Saavedra, Francisco</au><au>Prieto, Martin</au><au>Sanchez-Casanova, Silvia</au><au>Lopez, Daniel</au><au>Sebastian, Victor</au><au>Arruebo, Manuel</au><au>Santamaria, Jesus</au><au>Vilaboa, Nuria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gold nanoparticles for the in situ polymerization of near-infrared responsive hydrogels based on fibrin</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>100</volume><spage>306</spage><epage>315</epage><pages>306-315</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Non-invasiveness and relative safety of photothermal therapy, which enables local hyperthermia of target tissues using a near infrared (NIR) laser, has attracted increasing interest. Due to their biocompatibility, amenability of synthesis and functionalization, gold nanoparticles have been investigated as therapeutic photothermal agents. In this work, hollow gold nanoparticles (HGNP) were coated with poly-l-lysine through the use of COOH-Poly(ethylene glycol)-SH as a covalent linker. The functionalized HGNP, which peak their surface plasmon resonance at 800 nm, can bind thrombin. Thrombin-conjugated HGNP conduct in situ fibrin polymerization, facilitating the process of generating photothermal matrices. Interestingly, the metallic core of thrombin-loaded HGNP fragmentates at physiological temperature. During polymerization process, matrices prepared with thrombin-loaded HGNP were loaded with genetically-modified stem cells that harbour a heat-activated and ligand-dependent gene switch for regulating transgene expression. NIR laser irradiation of resulting cell constructs in the presence of ligand successfully triggered transgene expression in vitro and in vivo.
Current technological development allows synthesis of gold nanoparticles (GNP) in a wide range of shapes and sizes, consistently and at scale. GNP, stable and easily functionalized, show low cytotoxicity and high biocompatibility. Allied to that, GNP present optoelectronic properties that have been exploited in a range of biomedical applications. Following a layer-by-layer functionalization approach, we prepared hollow GNP coated with a positively charged copolymer that enabled thrombin conjugation. The resulting nanomaterial efficiently catalyzed the formation of fibrin hydrogels which convert energy of the near infrared (NIR) into heat. The resulting NIR-responsive hydrogels can function as scaffolding for cells capable of controlled gene expression triggered by optical hyperthermia, thus allowing the deployment of therapeutic gene products in desired spatiotemporal frameworks.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31568875</pmid><doi>10.1016/j.actbio.2019.09.040</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3165-0156</orcidid><orcidid>https://orcid.org/0000-0002-6873-5244</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2019-12, Vol.100, p.306-315 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2299772864 |
source | Access via ScienceDirect (Elsevier) |
subjects | Biocompatibility Chemical compounds Fibrin Gene expression Gene therapy Genetic modification Gold Hollow gold nanoparticles (HGNP) Hydrogels Hyperthermia Infrared lasers Irradiation Ligands Lysine Nanoparticles Near infrared (NIR) Pharmacology Poly-L-lysine Polyethylene glycol Polymerization Stem cells Surface plasmon resonance Thrombin |
title | Gold nanoparticles for the in situ polymerization of near-infrared responsive hydrogels based on fibrin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gold%20nanoparticles%20for%20the%20in%20situ%20polymerization%20of%20near-infrared%20responsive%20hydrogels%20based%20on%20fibrin&rft.jtitle=Acta%20biomaterialia&rft.au=Escudero-Duch,%20Clara&rft.date=2019-12-01&rft.volume=100&rft.spage=306&rft.epage=315&rft.pages=306-315&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2019.09.040&rft_dat=%3Cproquest_cross%3E2299772864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329719651&rft_id=info:pmid/31568875&rft_els_id=S1742706119306610&rfr_iscdi=true |