A Molecular Approach for Mitigation of Aluminum Pitting based on Films of Zinc(II) and Gallium(III) Metallosurfactants

The use of metallosurfactants to prevent pitting corrosion of aluminum surfaces is discussed based on the behavior of the metallosurfactants [ZnII(LN2O2)H2O] (1) and [GaIII(LN2O3)] (2). These species were deposited as multilayer Langmuir–Blodgett films and characterized by IR reflection absorption s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2019-11, Vol.25 (62), p.14048-14053
Hauptverfasser: Weeraratne, A. D. K. Isuri, Hewa‐Rahinduwage, Chathuranga C., Gonawala, Sunalee, Luo, Long, Verani, Cláudio N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14053
container_issue 62
container_start_page 14048
container_title Chemistry : a European journal
container_volume 25
creator Weeraratne, A. D. K. Isuri
Hewa‐Rahinduwage, Chathuranga C.
Gonawala, Sunalee
Luo, Long
Verani, Cláudio N.
description The use of metallosurfactants to prevent pitting corrosion of aluminum surfaces is discussed based on the behavior of the metallosurfactants [ZnII(LN2O2)H2O] (1) and [GaIII(LN2O3)] (2). These species were deposited as multilayer Langmuir–Blodgett films and characterized by IR reflection absorption spectroscopy and UV/Vis spectroscopy. Scanning electron microscopy images, potentiodynamic polarization experiments, and electrochemical impedance spectroscopy were used to assess corrosion mitigation. Both metallosurfactants demonstrate superior anticorrosion activity due to the presence of redox‐inactive 3d10 metal ions that enhance the structural resistance of the ordered molecular films and limit chloride mobility and electron transfer. Avoid the pitfalls! Metallosurfactants containing zinc(II) or gallium(III) prevent pitting corrosion in aluminum surfaces when deposited as Langmuir–Blodgett films (see figure). These redox‐inactive 3d10 ions enhance the structural resistance of the organic framework and limit chloride mobility and electron transfer attaining superior inhibition efficiency of up to 77 %.
doi_str_mv 10.1002/chem.201903408
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2299449182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299449182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4108-4377b851d20df9b915bed1cc8c0d7c647f87bcfb70856c2e82dbc672e9a8f9a43</originalsourceid><addsrcrecordid>eNqFkbtrHDEQxkVIiM9O2pRBkMYu9qzXrqTyOPw48BEXSZNGaLWSLaNdXaSVg__76Dg_IE2q4Zv5zccMHwBfMFpihMi5ubfjkiAsEWVIvAML3BLcUN6178ECScabrqXyCBzn_IAQkh2lH8ERxW3XCkwX4HEFtzFYU4JOcLXbpajNPXQxwa2f_Z2efZxgdHAVyuinMsJbP89-uoO9znaAdXjpw5j3yC8_mdPN5gzqaYBXOgRfxqprY2vnKmMuyWkz62nOn8AHp0O2n5_rCfh5efFjfd3cfL_arFc3jWEYiYZRznvR4oGgwcle4ra3AzZGGDRw0zHuBO-N6zkSbWeIFWToTceJlVo4qRk9AacH3_rY72LzrEafjQ1BTzaWrAiRkjGJBanot3_Qh1jSVK9ThGLCOi4EqtTyQJkUc07WqV3yo05PCiO1T0TtE1GvidSFr8-2pR_t8Iq_RFABeQD--GCf_mOn1tcX2zfzvwAZlw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312467880</pqid></control><display><type>article</type><title>A Molecular Approach for Mitigation of Aluminum Pitting based on Films of Zinc(II) and Gallium(III) Metallosurfactants</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Weeraratne, A. D. K. Isuri ; Hewa‐Rahinduwage, Chathuranga C. ; Gonawala, Sunalee ; Luo, Long ; Verani, Cláudio N.</creator><creatorcontrib>Weeraratne, A. D. K. Isuri ; Hewa‐Rahinduwage, Chathuranga C. ; Gonawala, Sunalee ; Luo, Long ; Verani, Cláudio N.</creatorcontrib><description>The use of metallosurfactants to prevent pitting corrosion of aluminum surfaces is discussed based on the behavior of the metallosurfactants [ZnII(LN2O2)H2O] (1) and [GaIII(LN2O3)] (2). These species were deposited as multilayer Langmuir–Blodgett films and characterized by IR reflection absorption spectroscopy and UV/Vis spectroscopy. Scanning electron microscopy images, potentiodynamic polarization experiments, and electrochemical impedance spectroscopy were used to assess corrosion mitigation. Both metallosurfactants demonstrate superior anticorrosion activity due to the presence of redox‐inactive 3d10 metal ions that enhance the structural resistance of the ordered molecular films and limit chloride mobility and electron transfer. Avoid the pitfalls! Metallosurfactants containing zinc(II) or gallium(III) prevent pitting corrosion in aluminum surfaces when deposited as Langmuir–Blodgett films (see figure). These redox‐inactive 3d10 ions enhance the structural resistance of the organic framework and limit chloride mobility and electron transfer attaining superior inhibition efficiency of up to 77 %.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201903408</identifier><identifier>PMID: 31565813</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption spectroscopy ; Aluminum ; aluminum corrosion ; aluminum pitting ; Chemistry ; Corrosion ; Corrosion prevention ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electron transfer ; Gallium ; gallium complexes ; Infrared spectroscopy ; Langmuir-Blodgett films ; Metal ions ; metallosurfactants ; Multilayers ; Pitting (corrosion) ; Scanning electron microscopy ; Spectrum analysis ; Zinc ; zinc complexes</subject><ispartof>Chemistry : a European journal, 2019-11, Vol.25 (62), p.14048-14053</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4108-4377b851d20df9b915bed1cc8c0d7c647f87bcfb70856c2e82dbc672e9a8f9a43</citedby><cites>FETCH-LOGICAL-c4108-4377b851d20df9b915bed1cc8c0d7c647f87bcfb70856c2e82dbc672e9a8f9a43</cites><orcidid>0000-0001-6482-1738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201903408$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201903408$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31565813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weeraratne, A. D. K. Isuri</creatorcontrib><creatorcontrib>Hewa‐Rahinduwage, Chathuranga C.</creatorcontrib><creatorcontrib>Gonawala, Sunalee</creatorcontrib><creatorcontrib>Luo, Long</creatorcontrib><creatorcontrib>Verani, Cláudio N.</creatorcontrib><title>A Molecular Approach for Mitigation of Aluminum Pitting based on Films of Zinc(II) and Gallium(III) Metallosurfactants</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>The use of metallosurfactants to prevent pitting corrosion of aluminum surfaces is discussed based on the behavior of the metallosurfactants [ZnII(LN2O2)H2O] (1) and [GaIII(LN2O3)] (2). These species were deposited as multilayer Langmuir–Blodgett films and characterized by IR reflection absorption spectroscopy and UV/Vis spectroscopy. Scanning electron microscopy images, potentiodynamic polarization experiments, and electrochemical impedance spectroscopy were used to assess corrosion mitigation. Both metallosurfactants demonstrate superior anticorrosion activity due to the presence of redox‐inactive 3d10 metal ions that enhance the structural resistance of the ordered molecular films and limit chloride mobility and electron transfer. Avoid the pitfalls! Metallosurfactants containing zinc(II) or gallium(III) prevent pitting corrosion in aluminum surfaces when deposited as Langmuir–Blodgett films (see figure). These redox‐inactive 3d10 ions enhance the structural resistance of the organic framework and limit chloride mobility and electron transfer attaining superior inhibition efficiency of up to 77 %.</description><subject>Absorption spectroscopy</subject><subject>Aluminum</subject><subject>aluminum corrosion</subject><subject>aluminum pitting</subject><subject>Chemistry</subject><subject>Corrosion</subject><subject>Corrosion prevention</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Gallium</subject><subject>gallium complexes</subject><subject>Infrared spectroscopy</subject><subject>Langmuir-Blodgett films</subject><subject>Metal ions</subject><subject>metallosurfactants</subject><subject>Multilayers</subject><subject>Pitting (corrosion)</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Zinc</subject><subject>zinc complexes</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkbtrHDEQxkVIiM9O2pRBkMYu9qzXrqTyOPw48BEXSZNGaLWSLaNdXaSVg__76Dg_IE2q4Zv5zccMHwBfMFpihMi5ubfjkiAsEWVIvAML3BLcUN6178ECScabrqXyCBzn_IAQkh2lH8ERxW3XCkwX4HEFtzFYU4JOcLXbpajNPXQxwa2f_Z2efZxgdHAVyuinMsJbP89-uoO9znaAdXjpw5j3yC8_mdPN5gzqaYBXOgRfxqprY2vnKmMuyWkz62nOn8AHp0O2n5_rCfh5efFjfd3cfL_arFc3jWEYiYZRznvR4oGgwcle4ra3AzZGGDRw0zHuBO-N6zkSbWeIFWToTceJlVo4qRk9AacH3_rY72LzrEafjQ1BTzaWrAiRkjGJBanot3_Qh1jSVK9ThGLCOi4EqtTyQJkUc07WqV3yo05PCiO1T0TtE1GvidSFr8-2pR_t8Iq_RFABeQD--GCf_mOn1tcX2zfzvwAZlw0</recordid><startdate>20191107</startdate><enddate>20191107</enddate><creator>Weeraratne, A. D. K. Isuri</creator><creator>Hewa‐Rahinduwage, Chathuranga C.</creator><creator>Gonawala, Sunalee</creator><creator>Luo, Long</creator><creator>Verani, Cláudio N.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6482-1738</orcidid></search><sort><creationdate>20191107</creationdate><title>A Molecular Approach for Mitigation of Aluminum Pitting based on Films of Zinc(II) and Gallium(III) Metallosurfactants</title><author>Weeraratne, A. D. K. Isuri ; Hewa‐Rahinduwage, Chathuranga C. ; Gonawala, Sunalee ; Luo, Long ; Verani, Cláudio N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4108-4377b851d20df9b915bed1cc8c0d7c647f87bcfb70856c2e82dbc672e9a8f9a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption spectroscopy</topic><topic>Aluminum</topic><topic>aluminum corrosion</topic><topic>aluminum pitting</topic><topic>Chemistry</topic><topic>Corrosion</topic><topic>Corrosion prevention</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Gallium</topic><topic>gallium complexes</topic><topic>Infrared spectroscopy</topic><topic>Langmuir-Blodgett films</topic><topic>Metal ions</topic><topic>metallosurfactants</topic><topic>Multilayers</topic><topic>Pitting (corrosion)</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Zinc</topic><topic>zinc complexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weeraratne, A. D. K. Isuri</creatorcontrib><creatorcontrib>Hewa‐Rahinduwage, Chathuranga C.</creatorcontrib><creatorcontrib>Gonawala, Sunalee</creatorcontrib><creatorcontrib>Luo, Long</creatorcontrib><creatorcontrib>Verani, Cláudio N.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weeraratne, A. D. K. Isuri</au><au>Hewa‐Rahinduwage, Chathuranga C.</au><au>Gonawala, Sunalee</au><au>Luo, Long</au><au>Verani, Cláudio N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Molecular Approach for Mitigation of Aluminum Pitting based on Films of Zinc(II) and Gallium(III) Metallosurfactants</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2019-11-07</date><risdate>2019</risdate><volume>25</volume><issue>62</issue><spage>14048</spage><epage>14053</epage><pages>14048-14053</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>The use of metallosurfactants to prevent pitting corrosion of aluminum surfaces is discussed based on the behavior of the metallosurfactants [ZnII(LN2O2)H2O] (1) and [GaIII(LN2O3)] (2). These species were deposited as multilayer Langmuir–Blodgett films and characterized by IR reflection absorption spectroscopy and UV/Vis spectroscopy. Scanning electron microscopy images, potentiodynamic polarization experiments, and electrochemical impedance spectroscopy were used to assess corrosion mitigation. Both metallosurfactants demonstrate superior anticorrosion activity due to the presence of redox‐inactive 3d10 metal ions that enhance the structural resistance of the ordered molecular films and limit chloride mobility and electron transfer. Avoid the pitfalls! Metallosurfactants containing zinc(II) or gallium(III) prevent pitting corrosion in aluminum surfaces when deposited as Langmuir–Blodgett films (see figure). These redox‐inactive 3d10 ions enhance the structural resistance of the organic framework and limit chloride mobility and electron transfer attaining superior inhibition efficiency of up to 77 %.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31565813</pmid><doi>10.1002/chem.201903408</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6482-1738</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2019-11, Vol.25 (62), p.14048-14053
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2299449182
source Wiley Online Library Journals Frontfile Complete
subjects Absorption spectroscopy
Aluminum
aluminum corrosion
aluminum pitting
Chemistry
Corrosion
Corrosion prevention
Electrochemical impedance spectroscopy
Electrochemistry
Electron transfer
Gallium
gallium complexes
Infrared spectroscopy
Langmuir-Blodgett films
Metal ions
metallosurfactants
Multilayers
Pitting (corrosion)
Scanning electron microscopy
Spectrum analysis
Zinc
zinc complexes
title A Molecular Approach for Mitigation of Aluminum Pitting based on Films of Zinc(II) and Gallium(III) Metallosurfactants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A52%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Molecular%20Approach%20for%20Mitigation%20of%20Aluminum%20Pitting%20based%20on%20Films%20of%20Zinc(II)%20and%20Gallium(III)%20Metallosurfactants&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Weeraratne,%20A.%20D.%20K.%20Isuri&rft.date=2019-11-07&rft.volume=25&rft.issue=62&rft.spage=14048&rft.epage=14053&rft.pages=14048-14053&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201903408&rft_dat=%3Cproquest_cross%3E2299449182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312467880&rft_id=info:pmid/31565813&rfr_iscdi=true