A Molecular Approach for Mitigation of Aluminum Pitting based on Films of Zinc(II) and Gallium(III) Metallosurfactants
The use of metallosurfactants to prevent pitting corrosion of aluminum surfaces is discussed based on the behavior of the metallosurfactants [ZnII(LN2O2)H2O] (1) and [GaIII(LN2O3)] (2). These species were deposited as multilayer Langmuir–Blodgett films and characterized by IR reflection absorption s...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2019-11, Vol.25 (62), p.14048-14053 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14053 |
---|---|
container_issue | 62 |
container_start_page | 14048 |
container_title | Chemistry : a European journal |
container_volume | 25 |
creator | Weeraratne, A. D. K. Isuri Hewa‐Rahinduwage, Chathuranga C. Gonawala, Sunalee Luo, Long Verani, Cláudio N. |
description | The use of metallosurfactants to prevent pitting corrosion of aluminum surfaces is discussed based on the behavior of the metallosurfactants [ZnII(LN2O2)H2O] (1) and [GaIII(LN2O3)] (2). These species were deposited as multilayer Langmuir–Blodgett films and characterized by IR reflection absorption spectroscopy and UV/Vis spectroscopy. Scanning electron microscopy images, potentiodynamic polarization experiments, and electrochemical impedance spectroscopy were used to assess corrosion mitigation. Both metallosurfactants demonstrate superior anticorrosion activity due to the presence of redox‐inactive 3d10 metal ions that enhance the structural resistance of the ordered molecular films and limit chloride mobility and electron transfer.
Avoid the pitfalls! Metallosurfactants containing zinc(II) or gallium(III) prevent pitting corrosion in aluminum surfaces when deposited as Langmuir–Blodgett films (see figure). These redox‐inactive 3d10 ions enhance the structural resistance of the organic framework and limit chloride mobility and electron transfer attaining superior inhibition efficiency of up to 77 %. |
doi_str_mv | 10.1002/chem.201903408 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2299449182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299449182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4108-4377b851d20df9b915bed1cc8c0d7c647f87bcfb70856c2e82dbc672e9a8f9a43</originalsourceid><addsrcrecordid>eNqFkbtrHDEQxkVIiM9O2pRBkMYu9qzXrqTyOPw48BEXSZNGaLWSLaNdXaSVg__76Dg_IE2q4Zv5zccMHwBfMFpihMi5ubfjkiAsEWVIvAML3BLcUN6178ECScabrqXyCBzn_IAQkh2lH8ERxW3XCkwX4HEFtzFYU4JOcLXbpajNPXQxwa2f_Z2efZxgdHAVyuinMsJbP89-uoO9znaAdXjpw5j3yC8_mdPN5gzqaYBXOgRfxqprY2vnKmMuyWkz62nOn8AHp0O2n5_rCfh5efFjfd3cfL_arFc3jWEYiYZRznvR4oGgwcle4ra3AzZGGDRw0zHuBO-N6zkSbWeIFWToTceJlVo4qRk9AacH3_rY72LzrEafjQ1BTzaWrAiRkjGJBanot3_Qh1jSVK9ThGLCOi4EqtTyQJkUc07WqV3yo05PCiO1T0TtE1GvidSFr8-2pR_t8Iq_RFABeQD--GCf_mOn1tcX2zfzvwAZlw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312467880</pqid></control><display><type>article</type><title>A Molecular Approach for Mitigation of Aluminum Pitting based on Films of Zinc(II) and Gallium(III) Metallosurfactants</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Weeraratne, A. D. K. Isuri ; Hewa‐Rahinduwage, Chathuranga C. ; Gonawala, Sunalee ; Luo, Long ; Verani, Cláudio N.</creator><creatorcontrib>Weeraratne, A. D. K. Isuri ; Hewa‐Rahinduwage, Chathuranga C. ; Gonawala, Sunalee ; Luo, Long ; Verani, Cláudio N.</creatorcontrib><description>The use of metallosurfactants to prevent pitting corrosion of aluminum surfaces is discussed based on the behavior of the metallosurfactants [ZnII(LN2O2)H2O] (1) and [GaIII(LN2O3)] (2). These species were deposited as multilayer Langmuir–Blodgett films and characterized by IR reflection absorption spectroscopy and UV/Vis spectroscopy. Scanning electron microscopy images, potentiodynamic polarization experiments, and electrochemical impedance spectroscopy were used to assess corrosion mitigation. Both metallosurfactants demonstrate superior anticorrosion activity due to the presence of redox‐inactive 3d10 metal ions that enhance the structural resistance of the ordered molecular films and limit chloride mobility and electron transfer.
Avoid the pitfalls! Metallosurfactants containing zinc(II) or gallium(III) prevent pitting corrosion in aluminum surfaces when deposited as Langmuir–Blodgett films (see figure). These redox‐inactive 3d10 ions enhance the structural resistance of the organic framework and limit chloride mobility and electron transfer attaining superior inhibition efficiency of up to 77 %.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201903408</identifier><identifier>PMID: 31565813</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption spectroscopy ; Aluminum ; aluminum corrosion ; aluminum pitting ; Chemistry ; Corrosion ; Corrosion prevention ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electron transfer ; Gallium ; gallium complexes ; Infrared spectroscopy ; Langmuir-Blodgett films ; Metal ions ; metallosurfactants ; Multilayers ; Pitting (corrosion) ; Scanning electron microscopy ; Spectrum analysis ; Zinc ; zinc complexes</subject><ispartof>Chemistry : a European journal, 2019-11, Vol.25 (62), p.14048-14053</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4108-4377b851d20df9b915bed1cc8c0d7c647f87bcfb70856c2e82dbc672e9a8f9a43</citedby><cites>FETCH-LOGICAL-c4108-4377b851d20df9b915bed1cc8c0d7c647f87bcfb70856c2e82dbc672e9a8f9a43</cites><orcidid>0000-0001-6482-1738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201903408$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201903408$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31565813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weeraratne, A. D. K. Isuri</creatorcontrib><creatorcontrib>Hewa‐Rahinduwage, Chathuranga C.</creatorcontrib><creatorcontrib>Gonawala, Sunalee</creatorcontrib><creatorcontrib>Luo, Long</creatorcontrib><creatorcontrib>Verani, Cláudio N.</creatorcontrib><title>A Molecular Approach for Mitigation of Aluminum Pitting based on Films of Zinc(II) and Gallium(III) Metallosurfactants</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>The use of metallosurfactants to prevent pitting corrosion of aluminum surfaces is discussed based on the behavior of the metallosurfactants [ZnII(LN2O2)H2O] (1) and [GaIII(LN2O3)] (2). These species were deposited as multilayer Langmuir–Blodgett films and characterized by IR reflection absorption spectroscopy and UV/Vis spectroscopy. Scanning electron microscopy images, potentiodynamic polarization experiments, and electrochemical impedance spectroscopy were used to assess corrosion mitigation. Both metallosurfactants demonstrate superior anticorrosion activity due to the presence of redox‐inactive 3d10 metal ions that enhance the structural resistance of the ordered molecular films and limit chloride mobility and electron transfer.
Avoid the pitfalls! Metallosurfactants containing zinc(II) or gallium(III) prevent pitting corrosion in aluminum surfaces when deposited as Langmuir–Blodgett films (see figure). These redox‐inactive 3d10 ions enhance the structural resistance of the organic framework and limit chloride mobility and electron transfer attaining superior inhibition efficiency of up to 77 %.</description><subject>Absorption spectroscopy</subject><subject>Aluminum</subject><subject>aluminum corrosion</subject><subject>aluminum pitting</subject><subject>Chemistry</subject><subject>Corrosion</subject><subject>Corrosion prevention</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Gallium</subject><subject>gallium complexes</subject><subject>Infrared spectroscopy</subject><subject>Langmuir-Blodgett films</subject><subject>Metal ions</subject><subject>metallosurfactants</subject><subject>Multilayers</subject><subject>Pitting (corrosion)</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Zinc</subject><subject>zinc complexes</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkbtrHDEQxkVIiM9O2pRBkMYu9qzXrqTyOPw48BEXSZNGaLWSLaNdXaSVg__76Dg_IE2q4Zv5zccMHwBfMFpihMi5ubfjkiAsEWVIvAML3BLcUN6178ECScabrqXyCBzn_IAQkh2lH8ERxW3XCkwX4HEFtzFYU4JOcLXbpajNPXQxwa2f_Z2efZxgdHAVyuinMsJbP89-uoO9znaAdXjpw5j3yC8_mdPN5gzqaYBXOgRfxqprY2vnKmMuyWkz62nOn8AHp0O2n5_rCfh5efFjfd3cfL_arFc3jWEYiYZRznvR4oGgwcle4ra3AzZGGDRw0zHuBO-N6zkSbWeIFWToTceJlVo4qRk9AacH3_rY72LzrEafjQ1BTzaWrAiRkjGJBanot3_Qh1jSVK9ThGLCOi4EqtTyQJkUc07WqV3yo05PCiO1T0TtE1GvidSFr8-2pR_t8Iq_RFABeQD--GCf_mOn1tcX2zfzvwAZlw0</recordid><startdate>20191107</startdate><enddate>20191107</enddate><creator>Weeraratne, A. D. K. Isuri</creator><creator>Hewa‐Rahinduwage, Chathuranga C.</creator><creator>Gonawala, Sunalee</creator><creator>Luo, Long</creator><creator>Verani, Cláudio N.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6482-1738</orcidid></search><sort><creationdate>20191107</creationdate><title>A Molecular Approach for Mitigation of Aluminum Pitting based on Films of Zinc(II) and Gallium(III) Metallosurfactants</title><author>Weeraratne, A. D. K. Isuri ; Hewa‐Rahinduwage, Chathuranga C. ; Gonawala, Sunalee ; Luo, Long ; Verani, Cláudio N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4108-4377b851d20df9b915bed1cc8c0d7c647f87bcfb70856c2e82dbc672e9a8f9a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption spectroscopy</topic><topic>Aluminum</topic><topic>aluminum corrosion</topic><topic>aluminum pitting</topic><topic>Chemistry</topic><topic>Corrosion</topic><topic>Corrosion prevention</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Gallium</topic><topic>gallium complexes</topic><topic>Infrared spectroscopy</topic><topic>Langmuir-Blodgett films</topic><topic>Metal ions</topic><topic>metallosurfactants</topic><topic>Multilayers</topic><topic>Pitting (corrosion)</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Zinc</topic><topic>zinc complexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weeraratne, A. D. K. Isuri</creatorcontrib><creatorcontrib>Hewa‐Rahinduwage, Chathuranga C.</creatorcontrib><creatorcontrib>Gonawala, Sunalee</creatorcontrib><creatorcontrib>Luo, Long</creatorcontrib><creatorcontrib>Verani, Cláudio N.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weeraratne, A. D. K. Isuri</au><au>Hewa‐Rahinduwage, Chathuranga C.</au><au>Gonawala, Sunalee</au><au>Luo, Long</au><au>Verani, Cláudio N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Molecular Approach for Mitigation of Aluminum Pitting based on Films of Zinc(II) and Gallium(III) Metallosurfactants</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2019-11-07</date><risdate>2019</risdate><volume>25</volume><issue>62</issue><spage>14048</spage><epage>14053</epage><pages>14048-14053</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>The use of metallosurfactants to prevent pitting corrosion of aluminum surfaces is discussed based on the behavior of the metallosurfactants [ZnII(LN2O2)H2O] (1) and [GaIII(LN2O3)] (2). These species were deposited as multilayer Langmuir–Blodgett films and characterized by IR reflection absorption spectroscopy and UV/Vis spectroscopy. Scanning electron microscopy images, potentiodynamic polarization experiments, and electrochemical impedance spectroscopy were used to assess corrosion mitigation. Both metallosurfactants demonstrate superior anticorrosion activity due to the presence of redox‐inactive 3d10 metal ions that enhance the structural resistance of the ordered molecular films and limit chloride mobility and electron transfer.
Avoid the pitfalls! Metallosurfactants containing zinc(II) or gallium(III) prevent pitting corrosion in aluminum surfaces when deposited as Langmuir–Blodgett films (see figure). These redox‐inactive 3d10 ions enhance the structural resistance of the organic framework and limit chloride mobility and electron transfer attaining superior inhibition efficiency of up to 77 %.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31565813</pmid><doi>10.1002/chem.201903408</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6482-1738</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2019-11, Vol.25 (62), p.14048-14053 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_2299449182 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Absorption spectroscopy Aluminum aluminum corrosion aluminum pitting Chemistry Corrosion Corrosion prevention Electrochemical impedance spectroscopy Electrochemistry Electron transfer Gallium gallium complexes Infrared spectroscopy Langmuir-Blodgett films Metal ions metallosurfactants Multilayers Pitting (corrosion) Scanning electron microscopy Spectrum analysis Zinc zinc complexes |
title | A Molecular Approach for Mitigation of Aluminum Pitting based on Films of Zinc(II) and Gallium(III) Metallosurfactants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A52%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Molecular%20Approach%20for%20Mitigation%20of%20Aluminum%20Pitting%20based%20on%20Films%20of%20Zinc(II)%20and%20Gallium(III)%20Metallosurfactants&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Weeraratne,%20A.%20D.%20K.%20Isuri&rft.date=2019-11-07&rft.volume=25&rft.issue=62&rft.spage=14048&rft.epage=14053&rft.pages=14048-14053&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201903408&rft_dat=%3Cproquest_cross%3E2299449182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312467880&rft_id=info:pmid/31565813&rfr_iscdi=true |