Remedies for Polysulfide Dissolution in Room‐Temperature Sodium–Sulfur Batteries
Rechargeable room‐temperature sodium–sulfur (RT‐NaS) batteries represent one of the most attractive technologies for future stationary energy storage due to their high energy density and low cost. The S cathodes can react with Na ions via two‐electron conversion reactions, thus achieving ultrahigh t...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2020-05, Vol.32 (18), p.e1903952-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 18 |
container_start_page | e1903952 |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Wang, Yun‐Xiao Lai, Wei‐Hong Chou, Shu‐Lei Liu, Hua‐Kun Dou, Shi‐Xue |
description | Rechargeable room‐temperature sodium–sulfur (RT‐NaS) batteries represent one of the most attractive technologies for future stationary energy storage due to their high energy density and low cost. The S cathodes can react with Na ions via two‐electron conversion reactions, thus achieving ultrahigh theoretical capacity (1672 mAh g−1) and specific energy (1273 Wh kg−1). Unfortunately, the sluggish reaction kinetics of the nonconductive S, severe polysulfide dissolution, and the use of metallic Na are causing enormous challenges for the development of RT‐NaS batteries. Fatal polysulfide dissolution is highlighted, important studies toward polysulfide immobilization and conversion are presented, and the reported remedies in terms of intact physical confinement, strong chemical interaction, blocking layers, and optimization of electrolytes are summarized. Future research directions toward practical RT‐NaS batteries are summarized.
Room‐temperature sodium–sulfur (RT‐NaS) batteries are emerging as a very competitive choice for large‐scale electrical energy storage. The understanding of and strategies for fatal polysulfide dissolution in sulfur cathodes are of crucial importance. Effective remedies in terms of intact physical confinement, strong chemical interaction, blocking layers, and optimization of electrolytes are summarized, followed by future research directions toward practical RT‐NaS batteries. |
doi_str_mv | 10.1002/adma.201903952 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2299447203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299447203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4782-bcf9d3591f63b589b727061691ba4d1c96564a010251b2dc1be6394ace0f23513</originalsourceid><addsrcrecordid>eNqFkE1rGzEQQEVJqJ201xzDQi69rDuSVlrP0bGbD0hocdyz0O5qQWbXcqQVwbf-hEL_YX9JFOymkEtOA8Obx_AIOaMwoQDsq256PWFAETgK9oGMqWA0LwDFERkDcpGjLKYjchLCGgBQgvxIRpwKKZkQY7Jamt401oSsdT774bpdiF1rG5MtbAiui4N1m8xusqVz_d9fv1em3xqvh-hN9uAaG9Pyz0M6iT671MNgfHJ9Iset7oL5fJin5OfVt9X8Jr_7fn07n93ldVFOWV7VLTZcIG0lr8QUq5KVIKlEWumioTVKIQsNFJigFWtqWhnJsdC1gZZxQfkp-bL3br17jCYMqrehNl2nN8bFoBhDLIqSAU_oxRt07aLfpO8U41giCsGmiZrsqdq7ELxp1dbbXvudoqBeequX3uq1dzo4P2hjlTq-4v8CJwD3wJPtzO4dnZot7mf_5c8d_42H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397995528</pqid></control><display><type>article</type><title>Remedies for Polysulfide Dissolution in Room‐Temperature Sodium–Sulfur Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Yun‐Xiao ; Lai, Wei‐Hong ; Chou, Shu‐Lei ; Liu, Hua‐Kun ; Dou, Shi‐Xue</creator><creatorcontrib>Wang, Yun‐Xiao ; Lai, Wei‐Hong ; Chou, Shu‐Lei ; Liu, Hua‐Kun ; Dou, Shi‐Xue</creatorcontrib><description>Rechargeable room‐temperature sodium–sulfur (RT‐NaS) batteries represent one of the most attractive technologies for future stationary energy storage due to their high energy density and low cost. The S cathodes can react with Na ions via two‐electron conversion reactions, thus achieving ultrahigh theoretical capacity (1672 mAh g−1) and specific energy (1273 Wh kg−1). Unfortunately, the sluggish reaction kinetics of the nonconductive S, severe polysulfide dissolution, and the use of metallic Na are causing enormous challenges for the development of RT‐NaS batteries. Fatal polysulfide dissolution is highlighted, important studies toward polysulfide immobilization and conversion are presented, and the reported remedies in terms of intact physical confinement, strong chemical interaction, blocking layers, and optimization of electrolytes are summarized. Future research directions toward practical RT‐NaS batteries are summarized.
Room‐temperature sodium–sulfur (RT‐NaS) batteries are emerging as a very competitive choice for large‐scale electrical energy storage. The understanding of and strategies for fatal polysulfide dissolution in sulfur cathodes are of crucial importance. Effective remedies in terms of intact physical confinement, strong chemical interaction, blocking layers, and optimization of electrolytes are summarized, followed by future research directions toward practical RT‐NaS batteries.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201903952</identifier><identifier>PMID: 31566255</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>blocking layers ; Conversion ; Dissolution ; Electrolytes ; Energy storage ; Flux density ; Optimization ; polysulfide dissolution ; Polysulfides ; Reaction kinetics ; Rechargeable batteries ; room‐temperature sodium–sulfur batteries ; Sodium ; Sulfur</subject><ispartof>Advanced materials (Weinheim), 2020-05, Vol.32 (18), p.e1903952-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4782-bcf9d3591f63b589b727061691ba4d1c96564a010251b2dc1be6394ace0f23513</citedby><cites>FETCH-LOGICAL-c4782-bcf9d3591f63b589b727061691ba4d1c96564a010251b2dc1be6394ace0f23513</cites><orcidid>0000-0003-1704-0829 ; 0000-0003-3824-7693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201903952$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201903952$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31566255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yun‐Xiao</creatorcontrib><creatorcontrib>Lai, Wei‐Hong</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><creatorcontrib>Liu, Hua‐Kun</creatorcontrib><creatorcontrib>Dou, Shi‐Xue</creatorcontrib><title>Remedies for Polysulfide Dissolution in Room‐Temperature Sodium–Sulfur Batteries</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Rechargeable room‐temperature sodium–sulfur (RT‐NaS) batteries represent one of the most attractive technologies for future stationary energy storage due to their high energy density and low cost. The S cathodes can react with Na ions via two‐electron conversion reactions, thus achieving ultrahigh theoretical capacity (1672 mAh g−1) and specific energy (1273 Wh kg−1). Unfortunately, the sluggish reaction kinetics of the nonconductive S, severe polysulfide dissolution, and the use of metallic Na are causing enormous challenges for the development of RT‐NaS batteries. Fatal polysulfide dissolution is highlighted, important studies toward polysulfide immobilization and conversion are presented, and the reported remedies in terms of intact physical confinement, strong chemical interaction, blocking layers, and optimization of electrolytes are summarized. Future research directions toward practical RT‐NaS batteries are summarized.
Room‐temperature sodium–sulfur (RT‐NaS) batteries are emerging as a very competitive choice for large‐scale electrical energy storage. The understanding of and strategies for fatal polysulfide dissolution in sulfur cathodes are of crucial importance. Effective remedies in terms of intact physical confinement, strong chemical interaction, blocking layers, and optimization of electrolytes are summarized, followed by future research directions toward practical RT‐NaS batteries.</description><subject>blocking layers</subject><subject>Conversion</subject><subject>Dissolution</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Optimization</subject><subject>polysulfide dissolution</subject><subject>Polysulfides</subject><subject>Reaction kinetics</subject><subject>Rechargeable batteries</subject><subject>room‐temperature sodium–sulfur batteries</subject><subject>Sodium</subject><subject>Sulfur</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQQEVJqJ201xzDQi69rDuSVlrP0bGbD0hocdyz0O5qQWbXcqQVwbf-hEL_YX9JFOymkEtOA8Obx_AIOaMwoQDsq256PWFAETgK9oGMqWA0LwDFERkDcpGjLKYjchLCGgBQgvxIRpwKKZkQY7Jamt401oSsdT774bpdiF1rG5MtbAiui4N1m8xusqVz_d9fv1em3xqvh-hN9uAaG9Pyz0M6iT671MNgfHJ9Iset7oL5fJin5OfVt9X8Jr_7fn07n93ldVFOWV7VLTZcIG0lr8QUq5KVIKlEWumioTVKIQsNFJigFWtqWhnJsdC1gZZxQfkp-bL3br17jCYMqrehNl2nN8bFoBhDLIqSAU_oxRt07aLfpO8U41giCsGmiZrsqdq7ELxp1dbbXvudoqBeequX3uq1dzo4P2hjlTq-4v8CJwD3wJPtzO4dnZot7mf_5c8d_42H</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Wang, Yun‐Xiao</creator><creator>Lai, Wei‐Hong</creator><creator>Chou, Shu‐Lei</creator><creator>Liu, Hua‐Kun</creator><creator>Dou, Shi‐Xue</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1704-0829</orcidid><orcidid>https://orcid.org/0000-0003-3824-7693</orcidid></search><sort><creationdate>20200501</creationdate><title>Remedies for Polysulfide Dissolution in Room‐Temperature Sodium–Sulfur Batteries</title><author>Wang, Yun‐Xiao ; Lai, Wei‐Hong ; Chou, Shu‐Lei ; Liu, Hua‐Kun ; Dou, Shi‐Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4782-bcf9d3591f63b589b727061691ba4d1c96564a010251b2dc1be6394ace0f23513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>blocking layers</topic><topic>Conversion</topic><topic>Dissolution</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Optimization</topic><topic>polysulfide dissolution</topic><topic>Polysulfides</topic><topic>Reaction kinetics</topic><topic>Rechargeable batteries</topic><topic>room‐temperature sodium–sulfur batteries</topic><topic>Sodium</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yun‐Xiao</creatorcontrib><creatorcontrib>Lai, Wei‐Hong</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><creatorcontrib>Liu, Hua‐Kun</creatorcontrib><creatorcontrib>Dou, Shi‐Xue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yun‐Xiao</au><au>Lai, Wei‐Hong</au><au>Chou, Shu‐Lei</au><au>Liu, Hua‐Kun</au><au>Dou, Shi‐Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remedies for Polysulfide Dissolution in Room‐Temperature Sodium–Sulfur Batteries</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>32</volume><issue>18</issue><spage>e1903952</spage><epage>n/a</epage><pages>e1903952-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Rechargeable room‐temperature sodium–sulfur (RT‐NaS) batteries represent one of the most attractive technologies for future stationary energy storage due to their high energy density and low cost. The S cathodes can react with Na ions via two‐electron conversion reactions, thus achieving ultrahigh theoretical capacity (1672 mAh g−1) and specific energy (1273 Wh kg−1). Unfortunately, the sluggish reaction kinetics of the nonconductive S, severe polysulfide dissolution, and the use of metallic Na are causing enormous challenges for the development of RT‐NaS batteries. Fatal polysulfide dissolution is highlighted, important studies toward polysulfide immobilization and conversion are presented, and the reported remedies in terms of intact physical confinement, strong chemical interaction, blocking layers, and optimization of electrolytes are summarized. Future research directions toward practical RT‐NaS batteries are summarized.
Room‐temperature sodium–sulfur (RT‐NaS) batteries are emerging as a very competitive choice for large‐scale electrical energy storage. The understanding of and strategies for fatal polysulfide dissolution in sulfur cathodes are of crucial importance. Effective remedies in terms of intact physical confinement, strong chemical interaction, blocking layers, and optimization of electrolytes are summarized, followed by future research directions toward practical RT‐NaS batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31566255</pmid><doi>10.1002/adma.201903952</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1704-0829</orcidid><orcidid>https://orcid.org/0000-0003-3824-7693</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-05, Vol.32 (18), p.e1903952-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2299447203 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | blocking layers Conversion Dissolution Electrolytes Energy storage Flux density Optimization polysulfide dissolution Polysulfides Reaction kinetics Rechargeable batteries room‐temperature sodium–sulfur batteries Sodium Sulfur |
title | Remedies for Polysulfide Dissolution in Room‐Temperature Sodium–Sulfur Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remedies%20for%20Polysulfide%20Dissolution%20in%20Room%E2%80%90Temperature%20Sodium%E2%80%93Sulfur%20Batteries&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Yun%E2%80%90Xiao&rft.date=2020-05-01&rft.volume=32&rft.issue=18&rft.spage=e1903952&rft.epage=n/a&rft.pages=e1903952-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201903952&rft_dat=%3Cproquest_cross%3E2299447203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397995528&rft_id=info:pmid/31566255&rfr_iscdi=true |