Remedies for Polysulfide Dissolution in Room‐Temperature Sodium–Sulfur Batteries

Rechargeable room‐temperature sodium–sulfur (RT‐NaS) batteries represent one of the most attractive technologies for future stationary energy storage due to their high energy density and low cost. The S cathodes can react with Na ions via two‐electron conversion reactions, thus achieving ultrahigh t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-05, Vol.32 (18), p.e1903952-n/a
Hauptverfasser: Wang, Yun‐Xiao, Lai, Wei‐Hong, Chou, Shu‐Lei, Liu, Hua‐Kun, Dou, Shi‐Xue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page e1903952
container_title Advanced materials (Weinheim)
container_volume 32
creator Wang, Yun‐Xiao
Lai, Wei‐Hong
Chou, Shu‐Lei
Liu, Hua‐Kun
Dou, Shi‐Xue
description Rechargeable room‐temperature sodium–sulfur (RT‐NaS) batteries represent one of the most attractive technologies for future stationary energy storage due to their high energy density and low cost. The S cathodes can react with Na ions via two‐electron conversion reactions, thus achieving ultrahigh theoretical capacity (1672 mAh g−1) and specific energy (1273 Wh kg−1). Unfortunately, the sluggish reaction kinetics of the nonconductive S, severe polysulfide dissolution, and the use of metallic Na are causing enormous challenges for the development of RT‐NaS batteries. Fatal polysulfide dissolution is highlighted, important studies toward polysulfide immobilization and conversion are presented, and the reported remedies in terms of intact physical confinement, strong chemical interaction, blocking layers, and optimization of electrolytes are summarized. Future research directions toward practical RT‐NaS batteries are summarized. Room‐temperature sodium–sulfur (RT‐NaS) batteries are emerging as a very competitive choice for large‐scale electrical energy storage. The understanding of and strategies for fatal polysulfide dissolution in sulfur cathodes are of crucial importance. Effective remedies in terms of intact physical confinement, strong chemical interaction, blocking layers, and optimization of electrolytes are summarized, followed by future research directions toward practical RT‐NaS batteries.
doi_str_mv 10.1002/adma.201903952
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2299447203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299447203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4782-bcf9d3591f63b589b727061691ba4d1c96564a010251b2dc1be6394ace0f23513</originalsourceid><addsrcrecordid>eNqFkE1rGzEQQEVJqJ201xzDQi69rDuSVlrP0bGbD0hocdyz0O5qQWbXcqQVwbf-hEL_YX9JFOymkEtOA8Obx_AIOaMwoQDsq256PWFAETgK9oGMqWA0LwDFERkDcpGjLKYjchLCGgBQgvxIRpwKKZkQY7Jamt401oSsdT774bpdiF1rG5MtbAiui4N1m8xusqVz_d9fv1em3xqvh-hN9uAaG9Pyz0M6iT671MNgfHJ9Iset7oL5fJin5OfVt9X8Jr_7fn07n93ldVFOWV7VLTZcIG0lr8QUq5KVIKlEWumioTVKIQsNFJigFWtqWhnJsdC1gZZxQfkp-bL3br17jCYMqrehNl2nN8bFoBhDLIqSAU_oxRt07aLfpO8U41giCsGmiZrsqdq7ELxp1dbbXvudoqBeequX3uq1dzo4P2hjlTq-4v8CJwD3wJPtzO4dnZot7mf_5c8d_42H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397995528</pqid></control><display><type>article</type><title>Remedies for Polysulfide Dissolution in Room‐Temperature Sodium–Sulfur Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Yun‐Xiao ; Lai, Wei‐Hong ; Chou, Shu‐Lei ; Liu, Hua‐Kun ; Dou, Shi‐Xue</creator><creatorcontrib>Wang, Yun‐Xiao ; Lai, Wei‐Hong ; Chou, Shu‐Lei ; Liu, Hua‐Kun ; Dou, Shi‐Xue</creatorcontrib><description>Rechargeable room‐temperature sodium–sulfur (RT‐NaS) batteries represent one of the most attractive technologies for future stationary energy storage due to their high energy density and low cost. The S cathodes can react with Na ions via two‐electron conversion reactions, thus achieving ultrahigh theoretical capacity (1672 mAh g−1) and specific energy (1273 Wh kg−1). Unfortunately, the sluggish reaction kinetics of the nonconductive S, severe polysulfide dissolution, and the use of metallic Na are causing enormous challenges for the development of RT‐NaS batteries. Fatal polysulfide dissolution is highlighted, important studies toward polysulfide immobilization and conversion are presented, and the reported remedies in terms of intact physical confinement, strong chemical interaction, blocking layers, and optimization of electrolytes are summarized. Future research directions toward practical RT‐NaS batteries are summarized. Room‐temperature sodium–sulfur (RT‐NaS) batteries are emerging as a very competitive choice for large‐scale electrical energy storage. The understanding of and strategies for fatal polysulfide dissolution in sulfur cathodes are of crucial importance. Effective remedies in terms of intact physical confinement, strong chemical interaction, blocking layers, and optimization of electrolytes are summarized, followed by future research directions toward practical RT‐NaS batteries.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201903952</identifier><identifier>PMID: 31566255</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>blocking layers ; Conversion ; Dissolution ; Electrolytes ; Energy storage ; Flux density ; Optimization ; polysulfide dissolution ; Polysulfides ; Reaction kinetics ; Rechargeable batteries ; room‐temperature sodium–sulfur batteries ; Sodium ; Sulfur</subject><ispartof>Advanced materials (Weinheim), 2020-05, Vol.32 (18), p.e1903952-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4782-bcf9d3591f63b589b727061691ba4d1c96564a010251b2dc1be6394ace0f23513</citedby><cites>FETCH-LOGICAL-c4782-bcf9d3591f63b589b727061691ba4d1c96564a010251b2dc1be6394ace0f23513</cites><orcidid>0000-0003-1704-0829 ; 0000-0003-3824-7693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201903952$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201903952$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31566255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yun‐Xiao</creatorcontrib><creatorcontrib>Lai, Wei‐Hong</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><creatorcontrib>Liu, Hua‐Kun</creatorcontrib><creatorcontrib>Dou, Shi‐Xue</creatorcontrib><title>Remedies for Polysulfide Dissolution in Room‐Temperature Sodium–Sulfur Batteries</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Rechargeable room‐temperature sodium–sulfur (RT‐NaS) batteries represent one of the most attractive technologies for future stationary energy storage due to their high energy density and low cost. The S cathodes can react with Na ions via two‐electron conversion reactions, thus achieving ultrahigh theoretical capacity (1672 mAh g−1) and specific energy (1273 Wh kg−1). Unfortunately, the sluggish reaction kinetics of the nonconductive S, severe polysulfide dissolution, and the use of metallic Na are causing enormous challenges for the development of RT‐NaS batteries. Fatal polysulfide dissolution is highlighted, important studies toward polysulfide immobilization and conversion are presented, and the reported remedies in terms of intact physical confinement, strong chemical interaction, blocking layers, and optimization of electrolytes are summarized. Future research directions toward practical RT‐NaS batteries are summarized. Room‐temperature sodium–sulfur (RT‐NaS) batteries are emerging as a very competitive choice for large‐scale electrical energy storage. The understanding of and strategies for fatal polysulfide dissolution in sulfur cathodes are of crucial importance. Effective remedies in terms of intact physical confinement, strong chemical interaction, blocking layers, and optimization of electrolytes are summarized, followed by future research directions toward practical RT‐NaS batteries.</description><subject>blocking layers</subject><subject>Conversion</subject><subject>Dissolution</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Optimization</subject><subject>polysulfide dissolution</subject><subject>Polysulfides</subject><subject>Reaction kinetics</subject><subject>Rechargeable batteries</subject><subject>room‐temperature sodium–sulfur batteries</subject><subject>Sodium</subject><subject>Sulfur</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQQEVJqJ201xzDQi69rDuSVlrP0bGbD0hocdyz0O5qQWbXcqQVwbf-hEL_YX9JFOymkEtOA8Obx_AIOaMwoQDsq256PWFAETgK9oGMqWA0LwDFERkDcpGjLKYjchLCGgBQgvxIRpwKKZkQY7Jamt401oSsdT774bpdiF1rG5MtbAiui4N1m8xusqVz_d9fv1em3xqvh-hN9uAaG9Pyz0M6iT671MNgfHJ9Iset7oL5fJin5OfVt9X8Jr_7fn07n93ldVFOWV7VLTZcIG0lr8QUq5KVIKlEWumioTVKIQsNFJigFWtqWhnJsdC1gZZxQfkp-bL3br17jCYMqrehNl2nN8bFoBhDLIqSAU_oxRt07aLfpO8U41giCsGmiZrsqdq7ELxp1dbbXvudoqBeequX3uq1dzo4P2hjlTq-4v8CJwD3wJPtzO4dnZot7mf_5c8d_42H</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Wang, Yun‐Xiao</creator><creator>Lai, Wei‐Hong</creator><creator>Chou, Shu‐Lei</creator><creator>Liu, Hua‐Kun</creator><creator>Dou, Shi‐Xue</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1704-0829</orcidid><orcidid>https://orcid.org/0000-0003-3824-7693</orcidid></search><sort><creationdate>20200501</creationdate><title>Remedies for Polysulfide Dissolution in Room‐Temperature Sodium–Sulfur Batteries</title><author>Wang, Yun‐Xiao ; Lai, Wei‐Hong ; Chou, Shu‐Lei ; Liu, Hua‐Kun ; Dou, Shi‐Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4782-bcf9d3591f63b589b727061691ba4d1c96564a010251b2dc1be6394ace0f23513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>blocking layers</topic><topic>Conversion</topic><topic>Dissolution</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Optimization</topic><topic>polysulfide dissolution</topic><topic>Polysulfides</topic><topic>Reaction kinetics</topic><topic>Rechargeable batteries</topic><topic>room‐temperature sodium–sulfur batteries</topic><topic>Sodium</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yun‐Xiao</creatorcontrib><creatorcontrib>Lai, Wei‐Hong</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><creatorcontrib>Liu, Hua‐Kun</creatorcontrib><creatorcontrib>Dou, Shi‐Xue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yun‐Xiao</au><au>Lai, Wei‐Hong</au><au>Chou, Shu‐Lei</au><au>Liu, Hua‐Kun</au><au>Dou, Shi‐Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remedies for Polysulfide Dissolution in Room‐Temperature Sodium–Sulfur Batteries</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>32</volume><issue>18</issue><spage>e1903952</spage><epage>n/a</epage><pages>e1903952-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Rechargeable room‐temperature sodium–sulfur (RT‐NaS) batteries represent one of the most attractive technologies for future stationary energy storage due to their high energy density and low cost. The S cathodes can react with Na ions via two‐electron conversion reactions, thus achieving ultrahigh theoretical capacity (1672 mAh g−1) and specific energy (1273 Wh kg−1). Unfortunately, the sluggish reaction kinetics of the nonconductive S, severe polysulfide dissolution, and the use of metallic Na are causing enormous challenges for the development of RT‐NaS batteries. Fatal polysulfide dissolution is highlighted, important studies toward polysulfide immobilization and conversion are presented, and the reported remedies in terms of intact physical confinement, strong chemical interaction, blocking layers, and optimization of electrolytes are summarized. Future research directions toward practical RT‐NaS batteries are summarized. Room‐temperature sodium–sulfur (RT‐NaS) batteries are emerging as a very competitive choice for large‐scale electrical energy storage. The understanding of and strategies for fatal polysulfide dissolution in sulfur cathodes are of crucial importance. Effective remedies in terms of intact physical confinement, strong chemical interaction, blocking layers, and optimization of electrolytes are summarized, followed by future research directions toward practical RT‐NaS batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31566255</pmid><doi>10.1002/adma.201903952</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1704-0829</orcidid><orcidid>https://orcid.org/0000-0003-3824-7693</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-05, Vol.32 (18), p.e1903952-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2299447203
source Wiley Online Library Journals Frontfile Complete
subjects blocking layers
Conversion
Dissolution
Electrolytes
Energy storage
Flux density
Optimization
polysulfide dissolution
Polysulfides
Reaction kinetics
Rechargeable batteries
room‐temperature sodium–sulfur batteries
Sodium
Sulfur
title Remedies for Polysulfide Dissolution in Room‐Temperature Sodium–Sulfur Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remedies%20for%20Polysulfide%20Dissolution%20in%20Room%E2%80%90Temperature%20Sodium%E2%80%93Sulfur%20Batteries&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Yun%E2%80%90Xiao&rft.date=2020-05-01&rft.volume=32&rft.issue=18&rft.spage=e1903952&rft.epage=n/a&rft.pages=e1903952-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201903952&rft_dat=%3Cproquest_cross%3E2299447203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397995528&rft_id=info:pmid/31566255&rfr_iscdi=true