Quartic Polynomials and the Golden Ratio

  Totland investigates graphs of quartic polynomials with inflection points by means of certain naturally defined points and length ratios. He sees that the graph of every quartic polynomial with inflection points can be obtained as the image of the graph of the symmetric quartic subject to an appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics magazine 2009-06, Vol.82 (3), p.197-201
1. Verfasser: TOTLAND, HARALD
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 3
container_start_page 197
container_title Mathematics magazine
container_volume 82
creator TOTLAND, HARALD
description   Totland investigates graphs of quartic polynomials with inflection points by means of certain naturally defined points and length ratios. He sees that the graph of every quartic polynomial with inflection points can be obtained as the image of the graph of the symmetric quartic subject to an appropriate affine transformation. An affine transformation consists of an invertible linear transformation followed by translation along a constant vector. An affine transformation of the plane has the following properties: straight lines are mapped to straight lines, parallel lines to parallel lines, and tangents to tangents, while length ratios between parallel line segments are preserved.
doi_str_mv 10.1080/0025570X.2009.11953618
format Magazinearticle
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_229875602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27765901</jstor_id><sourcerecordid>27765901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2072-e3c82484e75e9602f55d62549c2c8656c7c0e30a486280d0787a99dbfa7937673</originalsourceid><addsrcrecordid>eNo9kDtPwzAURi0EEqXwE0DZYEm4vo5fI6qgIFXiIZDYLOM4IlUSFzsd-u9JVMp0h3vONxxCrigUFBTcAiDnEj4LBNAFpZozQdURmVHNIAet4JjMJiifqFNyltIagKJAMSM3r1sbh8ZlL6Hd9aFrbJsy21fZ8O2zZWgr32dvdmjCOTmpx5-_-Ltz8vFw_754zFfPy6fF3Sp3CBJzz5zCUpVecq8FYM15JZCX2qFTggsnHXgGtlQCFVQglbRaV1-1lZpJIdmcXO93NzH8bH0aTNck59vW9j5sk0HUSvJxeSTFnnQxpBR9bTax6WzcGQpmKmMOZcxUxhzKjOLlXlynIcR_C6UUXANlv-AEXVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>229875602</pqid></control><display><type>magazinearticle</type><title>Quartic Polynomials and the Golden Ratio</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics &amp; Statistics</source><creator>TOTLAND, HARALD</creator><creatorcontrib>TOTLAND, HARALD</creatorcontrib><description>  Totland investigates graphs of quartic polynomials with inflection points by means of certain naturally defined points and length ratios. He sees that the graph of every quartic polynomial with inflection points can be obtained as the image of the graph of the symmetric quartic subject to an appropriate affine transformation. An affine transformation consists of an invertible linear transformation followed by translation along a constant vector. An affine transformation of the plane has the following properties: straight lines are mapped to straight lines, parallel lines to parallel lines, and tangents to tangents, while length ratios between parallel line segments are preserved.</description><identifier>ISSN: 0025-570X</identifier><identifier>EISSN: 1930-0980</identifier><identifier>DOI: 10.1080/0025570X.2009.11953618</identifier><language>eng</language><publisher>Washington: Mathematical Association of America</publisher><subject>Geometric lines ; Geometry ; Golden mean ; Graphs ; Inflection points ; Line graphs ; Mathematics education ; Parallel lines ; Pentagrams ; Polynomials ; Property lines ; Quartic polynomials ; Tangents ; Theorems ; Vertices</subject><ispartof>Mathematics magazine, 2009-06, Vol.82 (3), p.197-201</ispartof><rights>Copyright 2009 Mathematical Association of America (Incorporated)</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2072-e3c82484e75e9602f55d62549c2c8656c7c0e30a486280d0787a99dbfa7937673</citedby><cites>FETCH-LOGICAL-c2072-e3c82484e75e9602f55d62549c2c8656c7c0e30a486280d0787a99dbfa7937673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27765901$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27765901$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>776,780,799,828,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>TOTLAND, HARALD</creatorcontrib><title>Quartic Polynomials and the Golden Ratio</title><title>Mathematics magazine</title><description>  Totland investigates graphs of quartic polynomials with inflection points by means of certain naturally defined points and length ratios. He sees that the graph of every quartic polynomial with inflection points can be obtained as the image of the graph of the symmetric quartic subject to an appropriate affine transformation. An affine transformation consists of an invertible linear transformation followed by translation along a constant vector. An affine transformation of the plane has the following properties: straight lines are mapped to straight lines, parallel lines to parallel lines, and tangents to tangents, while length ratios between parallel line segments are preserved.</description><subject>Geometric lines</subject><subject>Geometry</subject><subject>Golden mean</subject><subject>Graphs</subject><subject>Inflection points</subject><subject>Line graphs</subject><subject>Mathematics education</subject><subject>Parallel lines</subject><subject>Pentagrams</subject><subject>Polynomials</subject><subject>Property lines</subject><subject>Quartic polynomials</subject><subject>Tangents</subject><subject>Theorems</subject><subject>Vertices</subject><issn>0025-570X</issn><issn>1930-0980</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2009</creationdate><recordtype>magazinearticle</recordtype><recordid>eNo9kDtPwzAURi0EEqXwE0DZYEm4vo5fI6qgIFXiIZDYLOM4IlUSFzsd-u9JVMp0h3vONxxCrigUFBTcAiDnEj4LBNAFpZozQdURmVHNIAet4JjMJiifqFNyltIagKJAMSM3r1sbh8ZlL6Hd9aFrbJsy21fZ8O2zZWgr32dvdmjCOTmpx5-_-Ltz8vFw_754zFfPy6fF3Sp3CBJzz5zCUpVecq8FYM15JZCX2qFTggsnHXgGtlQCFVQglbRaV1-1lZpJIdmcXO93NzH8bH0aTNck59vW9j5sk0HUSvJxeSTFnnQxpBR9bTax6WzcGQpmKmMOZcxUxhzKjOLlXlynIcR_C6UUXANlv-AEXVA</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>TOTLAND, HARALD</creator><general>Mathematical Association of America</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20090601</creationdate><title>Quartic Polynomials and the Golden Ratio</title><author>TOTLAND, HARALD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2072-e3c82484e75e9602f55d62549c2c8656c7c0e30a486280d0787a99dbfa7937673</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Geometric lines</topic><topic>Geometry</topic><topic>Golden mean</topic><topic>Graphs</topic><topic>Inflection points</topic><topic>Line graphs</topic><topic>Mathematics education</topic><topic>Parallel lines</topic><topic>Pentagrams</topic><topic>Polynomials</topic><topic>Property lines</topic><topic>Quartic polynomials</topic><topic>Tangents</topic><topic>Theorems</topic><topic>Vertices</topic><toplevel>online_resources</toplevel><creatorcontrib>TOTLAND, HARALD</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TOTLAND, HARALD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quartic Polynomials and the Golden Ratio</atitle><jtitle>Mathematics magazine</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>82</volume><issue>3</issue><spage>197</spage><epage>201</epage><pages>197-201</pages><issn>0025-570X</issn><eissn>1930-0980</eissn><abstract>  Totland investigates graphs of quartic polynomials with inflection points by means of certain naturally defined points and length ratios. He sees that the graph of every quartic polynomial with inflection points can be obtained as the image of the graph of the symmetric quartic subject to an appropriate affine transformation. An affine transformation consists of an invertible linear transformation followed by translation along a constant vector. An affine transformation of the plane has the following properties: straight lines are mapped to straight lines, parallel lines to parallel lines, and tangents to tangents, while length ratios between parallel line segments are preserved.</abstract><cop>Washington</cop><pub>Mathematical Association of America</pub><doi>10.1080/0025570X.2009.11953618</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-570X
ispartof Mathematics magazine, 2009-06, Vol.82 (3), p.197-201
issn 0025-570X
1930-0980
language eng
recordid cdi_proquest_miscellaneous_229875602
source Jstor Complete Legacy; Alma/SFX Local Collection; JSTOR Mathematics & Statistics
subjects Geometric lines
Geometry
Golden mean
Graphs
Inflection points
Line graphs
Mathematics education
Parallel lines
Pentagrams
Polynomials
Property lines
Quartic polynomials
Tangents
Theorems
Vertices
title Quartic Polynomials and the Golden Ratio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quartic%20Polynomials%20and%20the%20Golden%20Ratio&rft.jtitle=Mathematics%20magazine&rft.au=TOTLAND,%20HARALD&rft.date=2009-06-01&rft.volume=82&rft.issue=3&rft.spage=197&rft.epage=201&rft.pages=197-201&rft.issn=0025-570X&rft.eissn=1930-0980&rft_id=info:doi/10.1080/0025570X.2009.11953618&rft_dat=%3Cjstor_proqu%3E27765901%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=229875602&rft_id=info:pmid/&rft_jstor_id=27765901&rfr_iscdi=true