Graphite‑N Doped Graphene Quantum Dots as Semiconductor Additive in Perovskite Solar Cells

Efficient charge transport is especially important for achieving high performance of perovskite solar cells (PSCs). Here, molecularly designed graphite–nitrogen doped graphene quantum dots (GN-GQDs) act as a functional semiconductor additive in perovskite film. GN-GQDs with abundant N active sites p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-10, Vol.11 (41), p.37796-37803
Hauptverfasser: Gan, Xinlei, Yang, Siwei, Zhang, Jing, Wang, Gang, He, Peng, Sun, Hongrui, Yuan, Haobo, Yu, Luting, Ding, Guqiao, Zhu, Yuejin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37803
container_issue 41
container_start_page 37796
container_title ACS applied materials & interfaces
container_volume 11
creator Gan, Xinlei
Yang, Siwei
Zhang, Jing
Wang, Gang
He, Peng
Sun, Hongrui
Yuan, Haobo
Yu, Luting
Ding, Guqiao
Zhu, Yuejin
description Efficient charge transport is especially important for achieving high performance of perovskite solar cells (PSCs). Here, molecularly designed graphite–nitrogen doped graphene quantum dots (GN-GQDs) act as a functional semiconductor additive in perovskite film. GN-GQDs with abundant N active sites participate in the crystallization of perovskite film and effectively passivate the grain boundary (GB) trap states by Lewis base/acid interaction. Moreover, the semiconductive GN-GQDs at GBs exhibit matched energy structure with the perovskite, which facilitate the charge transport at GBs. GN-GQDs also show n-type dopant property to upshift the Fermi energy level of perovskite films. It largely improves the charge transport in PSCs and reduces the interface recombination at the same time. Profiting from these advantages, inverted planar PSCs with NiO/perovskite/PCBM/BCP structure achieves high efficiency of 19.8% with no hysteresis phenomenon. GN-GQDs modified PSCs also show high stability even without encapsulation, benefiting from the protected GBs and more hydrophobic surface of the modified film. This work highlights a judicious design method of GQDs additive to satisfy efficient and stable PSCs.
doi_str_mv 10.1021/acsami.9b13375
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2297127692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2297127692</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-25b811bd8c4cfc6fa3e4363fa2585e89a155f657145860206db1e3fde0891e43</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI5uXWcpQsc8mj6WMuooDD6YWQohTW8xY9vUpB1w51_wL_pLjHZw5-peDt853HsQOqVkRgmjF0p71ZhZXlDOU7GHJjSP4yhjgu3_7XF8iI683xCScEbEBD0vnOpeTA9fH5_3-Mp2UOJfCVrAT4Nq-6EJcu-x8ngFjdG2LQfdW4cvy9L0ZgvYtPgRnN3615CDV7ZWDs-hrv0xOqhU7eFkN6dofXO9nt9Gy4fF3fxyGSme8j5iosgoLcpMx7rSSaU4xDzhlWIiE5DligpRJSKlscgSwkhSFhR4VQLJchrQKTobYztn3wbwvWyM1-EA1YIdvGQsTylLk5wFdDai2lnvHVSyc6ZR7l1SIn9alGOLctdiMJyPhqDLjR1cGx75D_4G1o51gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2297127692</pqid></control><display><type>article</type><title>Graphite‑N Doped Graphene Quantum Dots as Semiconductor Additive in Perovskite Solar Cells</title><source>American Chemical Society Journals</source><creator>Gan, Xinlei ; Yang, Siwei ; Zhang, Jing ; Wang, Gang ; He, Peng ; Sun, Hongrui ; Yuan, Haobo ; Yu, Luting ; Ding, Guqiao ; Zhu, Yuejin</creator><creatorcontrib>Gan, Xinlei ; Yang, Siwei ; Zhang, Jing ; Wang, Gang ; He, Peng ; Sun, Hongrui ; Yuan, Haobo ; Yu, Luting ; Ding, Guqiao ; Zhu, Yuejin</creatorcontrib><description>Efficient charge transport is especially important for achieving high performance of perovskite solar cells (PSCs). Here, molecularly designed graphite–nitrogen doped graphene quantum dots (GN-GQDs) act as a functional semiconductor additive in perovskite film. GN-GQDs with abundant N active sites participate in the crystallization of perovskite film and effectively passivate the grain boundary (GB) trap states by Lewis base/acid interaction. Moreover, the semiconductive GN-GQDs at GBs exhibit matched energy structure with the perovskite, which facilitate the charge transport at GBs. GN-GQDs also show n-type dopant property to upshift the Fermi energy level of perovskite films. It largely improves the charge transport in PSCs and reduces the interface recombination at the same time. Profiting from these advantages, inverted planar PSCs with NiO/perovskite/PCBM/BCP structure achieves high efficiency of 19.8% with no hysteresis phenomenon. GN-GQDs modified PSCs also show high stability even without encapsulation, benefiting from the protected GBs and more hydrophobic surface of the modified film. This work highlights a judicious design method of GQDs additive to satisfy efficient and stable PSCs.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b13375</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-10, Vol.11 (41), p.37796-37803</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-25b811bd8c4cfc6fa3e4363fa2585e89a155f657145860206db1e3fde0891e43</citedby><cites>FETCH-LOGICAL-a373t-25b811bd8c4cfc6fa3e4363fa2585e89a155f657145860206db1e3fde0891e43</cites><orcidid>0000-0002-1328-719X ; 0000-0003-1674-3477 ; 0000-0002-2288-3807 ; 0000-0002-5227-8210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b13375$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b13375$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Gan, Xinlei</creatorcontrib><creatorcontrib>Yang, Siwei</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>He, Peng</creatorcontrib><creatorcontrib>Sun, Hongrui</creatorcontrib><creatorcontrib>Yuan, Haobo</creatorcontrib><creatorcontrib>Yu, Luting</creatorcontrib><creatorcontrib>Ding, Guqiao</creatorcontrib><creatorcontrib>Zhu, Yuejin</creatorcontrib><title>Graphite‑N Doped Graphene Quantum Dots as Semiconductor Additive in Perovskite Solar Cells</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Efficient charge transport is especially important for achieving high performance of perovskite solar cells (PSCs). Here, molecularly designed graphite–nitrogen doped graphene quantum dots (GN-GQDs) act as a functional semiconductor additive in perovskite film. GN-GQDs with abundant N active sites participate in the crystallization of perovskite film and effectively passivate the grain boundary (GB) trap states by Lewis base/acid interaction. Moreover, the semiconductive GN-GQDs at GBs exhibit matched energy structure with the perovskite, which facilitate the charge transport at GBs. GN-GQDs also show n-type dopant property to upshift the Fermi energy level of perovskite films. It largely improves the charge transport in PSCs and reduces the interface recombination at the same time. Profiting from these advantages, inverted planar PSCs with NiO/perovskite/PCBM/BCP structure achieves high efficiency of 19.8% with no hysteresis phenomenon. GN-GQDs modified PSCs also show high stability even without encapsulation, benefiting from the protected GBs and more hydrophobic surface of the modified film. This work highlights a judicious design method of GQDs additive to satisfy efficient and stable PSCs.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI5uXWcpQsc8mj6WMuooDD6YWQohTW8xY9vUpB1w51_wL_pLjHZw5-peDt853HsQOqVkRgmjF0p71ZhZXlDOU7GHJjSP4yhjgu3_7XF8iI683xCScEbEBD0vnOpeTA9fH5_3-Mp2UOJfCVrAT4Nq-6EJcu-x8ngFjdG2LQfdW4cvy9L0ZgvYtPgRnN3615CDV7ZWDs-hrv0xOqhU7eFkN6dofXO9nt9Gy4fF3fxyGSme8j5iosgoLcpMx7rSSaU4xDzhlWIiE5DligpRJSKlscgSwkhSFhR4VQLJchrQKTobYztn3wbwvWyM1-EA1YIdvGQsTylLk5wFdDai2lnvHVSyc6ZR7l1SIn9alGOLctdiMJyPhqDLjR1cGx75D_4G1o51gg</recordid><startdate>20191016</startdate><enddate>20191016</enddate><creator>Gan, Xinlei</creator><creator>Yang, Siwei</creator><creator>Zhang, Jing</creator><creator>Wang, Gang</creator><creator>He, Peng</creator><creator>Sun, Hongrui</creator><creator>Yuan, Haobo</creator><creator>Yu, Luting</creator><creator>Ding, Guqiao</creator><creator>Zhu, Yuejin</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1328-719X</orcidid><orcidid>https://orcid.org/0000-0003-1674-3477</orcidid><orcidid>https://orcid.org/0000-0002-2288-3807</orcidid><orcidid>https://orcid.org/0000-0002-5227-8210</orcidid></search><sort><creationdate>20191016</creationdate><title>Graphite‑N Doped Graphene Quantum Dots as Semiconductor Additive in Perovskite Solar Cells</title><author>Gan, Xinlei ; Yang, Siwei ; Zhang, Jing ; Wang, Gang ; He, Peng ; Sun, Hongrui ; Yuan, Haobo ; Yu, Luting ; Ding, Guqiao ; Zhu, Yuejin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-25b811bd8c4cfc6fa3e4363fa2585e89a155f657145860206db1e3fde0891e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Xinlei</creatorcontrib><creatorcontrib>Yang, Siwei</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>He, Peng</creatorcontrib><creatorcontrib>Sun, Hongrui</creatorcontrib><creatorcontrib>Yuan, Haobo</creatorcontrib><creatorcontrib>Yu, Luting</creatorcontrib><creatorcontrib>Ding, Guqiao</creatorcontrib><creatorcontrib>Zhu, Yuejin</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, Xinlei</au><au>Yang, Siwei</au><au>Zhang, Jing</au><au>Wang, Gang</au><au>He, Peng</au><au>Sun, Hongrui</au><au>Yuan, Haobo</au><au>Yu, Luting</au><au>Ding, Guqiao</au><au>Zhu, Yuejin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphite‑N Doped Graphene Quantum Dots as Semiconductor Additive in Perovskite Solar Cells</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-10-16</date><risdate>2019</risdate><volume>11</volume><issue>41</issue><spage>37796</spage><epage>37803</epage><pages>37796-37803</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Efficient charge transport is especially important for achieving high performance of perovskite solar cells (PSCs). Here, molecularly designed graphite–nitrogen doped graphene quantum dots (GN-GQDs) act as a functional semiconductor additive in perovskite film. GN-GQDs with abundant N active sites participate in the crystallization of perovskite film and effectively passivate the grain boundary (GB) trap states by Lewis base/acid interaction. Moreover, the semiconductive GN-GQDs at GBs exhibit matched energy structure with the perovskite, which facilitate the charge transport at GBs. GN-GQDs also show n-type dopant property to upshift the Fermi energy level of perovskite films. It largely improves the charge transport in PSCs and reduces the interface recombination at the same time. Profiting from these advantages, inverted planar PSCs with NiO/perovskite/PCBM/BCP structure achieves high efficiency of 19.8% with no hysteresis phenomenon. GN-GQDs modified PSCs also show high stability even without encapsulation, benefiting from the protected GBs and more hydrophobic surface of the modified film. This work highlights a judicious design method of GQDs additive to satisfy efficient and stable PSCs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.9b13375</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1328-719X</orcidid><orcidid>https://orcid.org/0000-0003-1674-3477</orcidid><orcidid>https://orcid.org/0000-0002-2288-3807</orcidid><orcidid>https://orcid.org/0000-0002-5227-8210</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-10, Vol.11 (41), p.37796-37803
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2297127692
source American Chemical Society Journals
title Graphite‑N Doped Graphene Quantum Dots as Semiconductor Additive in Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphite%E2%80%91N%20Doped%20Graphene%20Quantum%20Dots%20as%20Semiconductor%20Additive%20in%20Perovskite%20Solar%20Cells&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Gan,%20Xinlei&rft.date=2019-10-16&rft.volume=11&rft.issue=41&rft.spage=37796&rft.epage=37803&rft.pages=37796-37803&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b13375&rft_dat=%3Cproquest_cross%3E2297127692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2297127692&rft_id=info:pmid/&rfr_iscdi=true