A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors

• Some virulence effectors secreted from pathogens target host proteins and induce biochemical modifications that are monitored by nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Arabidopsis RIN4 protein (AtRIN4: RPM1-interacting protein 4) homologs are present in diverse plant sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2020-02, Vol.225 (3), p.1327-1342
Hauptverfasser: Prokchorchik, Maxim, Choi, Sera, Chung, Eui-Hwan, Won, Kyungho, Dangl, Jeffery L., Sohn, Kee Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1342
container_issue 3
container_start_page 1327
container_title The New phytologist
container_volume 225
creator Prokchorchik, Maxim
Choi, Sera
Chung, Eui-Hwan
Won, Kyungho
Dangl, Jeffery L.
Sohn, Kee Hoon
description • Some virulence effectors secreted from pathogens target host proteins and induce biochemical modifications that are monitored by nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Arabidopsis RIN4 protein (AtRIN4: RPM1-interacting protein 4) homologs are present in diverse plant species and targeted by several bacterial type III effector proteins including the cysteine protease AvrRpt2. • RIN4 is ‘guarded’ by several independently evolved NLRs from various plant species, including Arabidopsis RPS2. Recently, it was shown that the MR5 NLR from a wild apple relative can recognize the AvrRpt2 effector from Erwinia amylovora, but the details of this recognition remained unclear. • The present contribution reports the mechanism of AvrRpt2 recognition by independently evolved NLRs, MR5 from apple and RPS2, both of which require proteolytically processed RIN4 for activation. It shows that the C-terminal cleaved product of apple RIN4 (MdRIN4) but not AtRIN4 is necessary and sufficient for MR5 activation. Additionally, two polymorphic residues in AtRIN4 and MdRIN4 are identified that are crucial in the regulation of and physical association with NLRs. • It is proposed that polymorphisms in RIN4 from distantly related plant species allow it to remain an effector target while maintaining compatibility with multiple NLRs.
doi_str_mv 10.1111/nph.16218
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2297126803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26928267</jstor_id><sourcerecordid>26928267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4768-b2e4e321411b3c831fbff3e1154aeefe0ad809f6795f68500bd5372e6f7977443</originalsourceid><addsrcrecordid>eNp1kc1uFSEYhonR2GN14QVoSNzoYlr-BmaWTaPWpFEXmrgjDOfDcpyBEZhj5ja8YjmetgsT2ZCQ53344EXoOSVntK7zMN-cUclo9wBtqJB901GuHqINIaxrpJDfTtCTnHeEkL6V7DE64bRtiSBkg35f4JuYCy4mfYeCo8MGD8YWSN6M2K65gA-A5xQLmAx479MyQrCAwTmwJSY8j2bNNfYDVpziCNgHbGPYQzWGgmEfx6X4GA7yytYjH4IplZumpbrz4ZIJJ7AwV19-ih45M2Z4drufoq_v3n65vGquP73_cHlx3VihZNcMDARwRgWlA7cdp25wjgOlrTAADojZdqR3UvWtk11LyLBtuWIgneqVEoKfotdHb33czwVy0ZPPFsY6IsQla8Z6RZnsCK_oq3_QXVxSqNNpxjlVtK1kpd4cKZtizgmcnpOfTFo1JfpQlK5F6b9FVfblrXEZJtjek3fNVOD8CPzyI6z_N-mPn6_ulC-OiV2u33ifYLJnHZOK_wEbyKhc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331715712</pqid></control><display><type>article</type><title>A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors</title><source>MEDLINE</source><source>Wiley Online Library</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Wiley Online Library (Online service)</source><source>JSTOR</source><creator>Prokchorchik, Maxim ; Choi, Sera ; Chung, Eui-Hwan ; Won, Kyungho ; Dangl, Jeffery L. ; Sohn, Kee Hoon</creator><creatorcontrib>Prokchorchik, Maxim ; Choi, Sera ; Chung, Eui-Hwan ; Won, Kyungho ; Dangl, Jeffery L. ; Sohn, Kee Hoon</creatorcontrib><description>• Some virulence effectors secreted from pathogens target host proteins and induce biochemical modifications that are monitored by nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Arabidopsis RIN4 protein (AtRIN4: RPM1-interacting protein 4) homologs are present in diverse plant species and targeted by several bacterial type III effector proteins including the cysteine protease AvrRpt2. • RIN4 is ‘guarded’ by several independently evolved NLRs from various plant species, including Arabidopsis RPS2. Recently, it was shown that the MR5 NLR from a wild apple relative can recognize the AvrRpt2 effector from Erwinia amylovora, but the details of this recognition remained unclear. • The present contribution reports the mechanism of AvrRpt2 recognition by independently evolved NLRs, MR5 from apple and RPS2, both of which require proteolytically processed RIN4 for activation. It shows that the C-terminal cleaved product of apple RIN4 (MdRIN4) but not AtRIN4 is necessary and sufficient for MR5 activation. Additionally, two polymorphic residues in AtRIN4 and MdRIN4 are identified that are crucial in the regulation of and physical association with NLRs. • It is proposed that polymorphisms in RIN4 from distantly related plant species allow it to remain an effector target while maintaining compatibility with multiple NLRs.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16218</identifier><identifier>PMID: 31550400</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Activation ; Amino Acids - metabolism ; Apples ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - immunology ; Arabidopsis - microbiology ; Biological Evolution ; Conserved Sequence ; convergent evolution ; Cysteine ; Cysteine Proteases - metabolism ; Cysteine proteinase ; effector recognition ; Erwinia - enzymology ; Erwinia - pathogenicity ; Flowers &amp; plants ; Homology ; Host-Pathogen Interactions ; Immune system ; Immunity ; Immunity, Innate ; Innate immunity ; Leucine ; Malus - immunology ; Malus - microbiology ; Mutation - genetics ; Nicotiana benthamiana ; NLR ; Nucleotides ; Pathogens ; plant immune receptors ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant species ; Plants, Genetically Modified ; Polymorphism, Genetic ; Protease ; Protein Domains ; Proteins ; Receptors ; Receptors, Cell Surface - metabolism ; Recognition ; RIN4 ; RIN4 protein ; Species ; Virulence</subject><ispartof>The New phytologist, 2020-02, Vol.225 (3), p.1327-1342</ispartof><rights>2019 The Authors © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</rights><rights>Copyright © 2020 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4768-b2e4e321411b3c831fbff3e1154aeefe0ad809f6795f68500bd5372e6f7977443</citedby><cites>FETCH-LOGICAL-c4768-b2e4e321411b3c831fbff3e1154aeefe0ad809f6795f68500bd5372e6f7977443</cites><orcidid>0000-0002-9021-8649 ; 0000-0003-3199-8654 ; 0000-0002-5048-8142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26928267$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26928267$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,1433,27924,27925,45574,45575,46409,46833,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31550400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prokchorchik, Maxim</creatorcontrib><creatorcontrib>Choi, Sera</creatorcontrib><creatorcontrib>Chung, Eui-Hwan</creatorcontrib><creatorcontrib>Won, Kyungho</creatorcontrib><creatorcontrib>Dangl, Jeffery L.</creatorcontrib><creatorcontrib>Sohn, Kee Hoon</creatorcontrib><title>A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• Some virulence effectors secreted from pathogens target host proteins and induce biochemical modifications that are monitored by nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Arabidopsis RIN4 protein (AtRIN4: RPM1-interacting protein 4) homologs are present in diverse plant species and targeted by several bacterial type III effector proteins including the cysteine protease AvrRpt2. • RIN4 is ‘guarded’ by several independently evolved NLRs from various plant species, including Arabidopsis RPS2. Recently, it was shown that the MR5 NLR from a wild apple relative can recognize the AvrRpt2 effector from Erwinia amylovora, but the details of this recognition remained unclear. • The present contribution reports the mechanism of AvrRpt2 recognition by independently evolved NLRs, MR5 from apple and RPS2, both of which require proteolytically processed RIN4 for activation. It shows that the C-terminal cleaved product of apple RIN4 (MdRIN4) but not AtRIN4 is necessary and sufficient for MR5 activation. Additionally, two polymorphic residues in AtRIN4 and MdRIN4 are identified that are crucial in the regulation of and physical association with NLRs. • It is proposed that polymorphisms in RIN4 from distantly related plant species allow it to remain an effector target while maintaining compatibility with multiple NLRs.</description><subject>Activation</subject><subject>Amino Acids - metabolism</subject><subject>Apples</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - immunology</subject><subject>Arabidopsis - microbiology</subject><subject>Biological Evolution</subject><subject>Conserved Sequence</subject><subject>convergent evolution</subject><subject>Cysteine</subject><subject>Cysteine Proteases - metabolism</subject><subject>Cysteine proteinase</subject><subject>effector recognition</subject><subject>Erwinia - enzymology</subject><subject>Erwinia - pathogenicity</subject><subject>Flowers &amp; plants</subject><subject>Homology</subject><subject>Host-Pathogen Interactions</subject><subject>Immune system</subject><subject>Immunity</subject><subject>Immunity, Innate</subject><subject>Innate immunity</subject><subject>Leucine</subject><subject>Malus - immunology</subject><subject>Malus - microbiology</subject><subject>Mutation - genetics</subject><subject>Nicotiana benthamiana</subject><subject>NLR</subject><subject>Nucleotides</subject><subject>Pathogens</subject><subject>plant immune receptors</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant species</subject><subject>Plants, Genetically Modified</subject><subject>Polymorphism, Genetic</subject><subject>Protease</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Recognition</subject><subject>RIN4</subject><subject>RIN4 protein</subject><subject>Species</subject><subject>Virulence</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1uFSEYhonR2GN14QVoSNzoYlr-BmaWTaPWpFEXmrgjDOfDcpyBEZhj5ja8YjmetgsT2ZCQ53344EXoOSVntK7zMN-cUclo9wBtqJB901GuHqINIaxrpJDfTtCTnHeEkL6V7DE64bRtiSBkg35f4JuYCy4mfYeCo8MGD8YWSN6M2K65gA-A5xQLmAx479MyQrCAwTmwJSY8j2bNNfYDVpziCNgHbGPYQzWGgmEfx6X4GA7yytYjH4IplZumpbrz4ZIJJ7AwV19-ih45M2Z4drufoq_v3n65vGquP73_cHlx3VihZNcMDARwRgWlA7cdp25wjgOlrTAADojZdqR3UvWtk11LyLBtuWIgneqVEoKfotdHb33czwVy0ZPPFsY6IsQla8Z6RZnsCK_oq3_QXVxSqNNpxjlVtK1kpd4cKZtizgmcnpOfTFo1JfpQlK5F6b9FVfblrXEZJtjek3fNVOD8CPzyI6z_N-mPn6_ulC-OiV2u33ifYLJnHZOK_wEbyKhc</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Prokchorchik, Maxim</creator><creator>Choi, Sera</creator><creator>Chung, Eui-Hwan</creator><creator>Won, Kyungho</creator><creator>Dangl, Jeffery L.</creator><creator>Sohn, Kee Hoon</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9021-8649</orcidid><orcidid>https://orcid.org/0000-0003-3199-8654</orcidid><orcidid>https://orcid.org/0000-0002-5048-8142</orcidid></search><sort><creationdate>202002</creationdate><title>A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors</title><author>Prokchorchik, Maxim ; Choi, Sera ; Chung, Eui-Hwan ; Won, Kyungho ; Dangl, Jeffery L. ; Sohn, Kee Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4768-b2e4e321411b3c831fbff3e1154aeefe0ad809f6795f68500bd5372e6f7977443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation</topic><topic>Amino Acids - metabolism</topic><topic>Apples</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - immunology</topic><topic>Arabidopsis - microbiology</topic><topic>Biological Evolution</topic><topic>Conserved Sequence</topic><topic>convergent evolution</topic><topic>Cysteine</topic><topic>Cysteine Proteases - metabolism</topic><topic>Cysteine proteinase</topic><topic>effector recognition</topic><topic>Erwinia - enzymology</topic><topic>Erwinia - pathogenicity</topic><topic>Flowers &amp; plants</topic><topic>Homology</topic><topic>Host-Pathogen Interactions</topic><topic>Immune system</topic><topic>Immunity</topic><topic>Immunity, Innate</topic><topic>Innate immunity</topic><topic>Leucine</topic><topic>Malus - immunology</topic><topic>Malus - microbiology</topic><topic>Mutation - genetics</topic><topic>Nicotiana benthamiana</topic><topic>NLR</topic><topic>Nucleotides</topic><topic>Pathogens</topic><topic>plant immune receptors</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant species</topic><topic>Plants, Genetically Modified</topic><topic>Polymorphism, Genetic</topic><topic>Protease</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Recognition</topic><topic>RIN4</topic><topic>RIN4 protein</topic><topic>Species</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prokchorchik, Maxim</creatorcontrib><creatorcontrib>Choi, Sera</creatorcontrib><creatorcontrib>Chung, Eui-Hwan</creatorcontrib><creatorcontrib>Won, Kyungho</creatorcontrib><creatorcontrib>Dangl, Jeffery L.</creatorcontrib><creatorcontrib>Sohn, Kee Hoon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prokchorchik, Maxim</au><au>Choi, Sera</au><au>Chung, Eui-Hwan</au><au>Won, Kyungho</au><au>Dangl, Jeffery L.</au><au>Sohn, Kee Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2020-02</date><risdate>2020</risdate><volume>225</volume><issue>3</issue><spage>1327</spage><epage>1342</epage><pages>1327-1342</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• Some virulence effectors secreted from pathogens target host proteins and induce biochemical modifications that are monitored by nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Arabidopsis RIN4 protein (AtRIN4: RPM1-interacting protein 4) homologs are present in diverse plant species and targeted by several bacterial type III effector proteins including the cysteine protease AvrRpt2. • RIN4 is ‘guarded’ by several independently evolved NLRs from various plant species, including Arabidopsis RPS2. Recently, it was shown that the MR5 NLR from a wild apple relative can recognize the AvrRpt2 effector from Erwinia amylovora, but the details of this recognition remained unclear. • The present contribution reports the mechanism of AvrRpt2 recognition by independently evolved NLRs, MR5 from apple and RPS2, both of which require proteolytically processed RIN4 for activation. It shows that the C-terminal cleaved product of apple RIN4 (MdRIN4) but not AtRIN4 is necessary and sufficient for MR5 activation. Additionally, two polymorphic residues in AtRIN4 and MdRIN4 are identified that are crucial in the regulation of and physical association with NLRs. • It is proposed that polymorphisms in RIN4 from distantly related plant species allow it to remain an effector target while maintaining compatibility with multiple NLRs.</abstract><cop>England</cop><pub>Wiley</pub><pmid>31550400</pmid><doi>10.1111/nph.16218</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9021-8649</orcidid><orcidid>https://orcid.org/0000-0003-3199-8654</orcidid><orcidid>https://orcid.org/0000-0002-5048-8142</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2020-02, Vol.225 (3), p.1327-1342
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2297126803
source MEDLINE; Wiley Online Library; Free E-Journal (出版社公開部分のみ); Wiley Online Library (Online service); JSTOR
subjects Activation
Amino Acids - metabolism
Apples
Arabidopsis
Arabidopsis - genetics
Arabidopsis - immunology
Arabidopsis - microbiology
Biological Evolution
Conserved Sequence
convergent evolution
Cysteine
Cysteine Proteases - metabolism
Cysteine proteinase
effector recognition
Erwinia - enzymology
Erwinia - pathogenicity
Flowers & plants
Homology
Host-Pathogen Interactions
Immune system
Immunity
Immunity, Innate
Innate immunity
Leucine
Malus - immunology
Malus - microbiology
Mutation - genetics
Nicotiana benthamiana
NLR
Nucleotides
Pathogens
plant immune receptors
Plant Proteins - chemistry
Plant Proteins - genetics
Plant Proteins - metabolism
Plant species
Plants, Genetically Modified
Polymorphism, Genetic
Protease
Protein Domains
Proteins
Receptors
Receptors, Cell Surface - metabolism
Recognition
RIN4
RIN4 protein
Species
Virulence
title A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20host%20target%20of%20a%20bacterial%20cysteine%20protease%20virulence%20effector%20plays%20a%20key%20role%20in%20convergent%20evolution%20of%20plant%20innate%20immune%20system%20receptors&rft.jtitle=The%20New%20phytologist&rft.au=Prokchorchik,%20Maxim&rft.date=2020-02&rft.volume=225&rft.issue=3&rft.spage=1327&rft.epage=1342&rft.pages=1327-1342&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16218&rft_dat=%3Cjstor_proqu%3E26928267%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331715712&rft_id=info:pmid/31550400&rft_jstor_id=26928267&rfr_iscdi=true