A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors
• Some virulence effectors secreted from pathogens target host proteins and induce biochemical modifications that are monitored by nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Arabidopsis RIN4 protein (AtRIN4: RPM1-interacting protein 4) homologs are present in diverse plant sp...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2020-02, Vol.225 (3), p.1327-1342 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1342 |
---|---|
container_issue | 3 |
container_start_page | 1327 |
container_title | The New phytologist |
container_volume | 225 |
creator | Prokchorchik, Maxim Choi, Sera Chung, Eui-Hwan Won, Kyungho Dangl, Jeffery L. Sohn, Kee Hoon |
description | • Some virulence effectors secreted from pathogens target host proteins and induce biochemical modifications that are monitored by nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Arabidopsis RIN4 protein (AtRIN4: RPM1-interacting protein 4) homologs are present in diverse plant species and targeted by several bacterial type III effector proteins including the cysteine protease AvrRpt2.
• RIN4 is ‘guarded’ by several independently evolved NLRs from various plant species, including Arabidopsis RPS2. Recently, it was shown that the MR5 NLR from a wild apple relative can recognize the AvrRpt2 effector from Erwinia amylovora, but the details of this recognition remained unclear.
• The present contribution reports the mechanism of AvrRpt2 recognition by independently evolved NLRs, MR5 from apple and RPS2, both of which require proteolytically processed RIN4 for activation. It shows that the C-terminal cleaved product of apple RIN4 (MdRIN4) but not AtRIN4 is necessary and sufficient for MR5 activation. Additionally, two polymorphic residues in AtRIN4 and MdRIN4 are identified that are crucial in the regulation of and physical association with NLRs.
• It is proposed that polymorphisms in RIN4 from distantly related plant species allow it to remain an effector target while maintaining compatibility with multiple NLRs. |
doi_str_mv | 10.1111/nph.16218 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2297126803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26928267</jstor_id><sourcerecordid>26928267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4768-b2e4e321411b3c831fbff3e1154aeefe0ad809f6795f68500bd5372e6f7977443</originalsourceid><addsrcrecordid>eNp1kc1uFSEYhonR2GN14QVoSNzoYlr-BmaWTaPWpFEXmrgjDOfDcpyBEZhj5ja8YjmetgsT2ZCQ53344EXoOSVntK7zMN-cUclo9wBtqJB901GuHqINIaxrpJDfTtCTnHeEkL6V7DE64bRtiSBkg35f4JuYCy4mfYeCo8MGD8YWSN6M2K65gA-A5xQLmAx479MyQrCAwTmwJSY8j2bNNfYDVpziCNgHbGPYQzWGgmEfx6X4GA7yytYjH4IplZumpbrz4ZIJJ7AwV19-ih45M2Z4drufoq_v3n65vGquP73_cHlx3VihZNcMDARwRgWlA7cdp25wjgOlrTAADojZdqR3UvWtk11LyLBtuWIgneqVEoKfotdHb33czwVy0ZPPFsY6IsQla8Z6RZnsCK_oq3_QXVxSqNNpxjlVtK1kpd4cKZtizgmcnpOfTFo1JfpQlK5F6b9FVfblrXEZJtjek3fNVOD8CPzyI6z_N-mPn6_ulC-OiV2u33ifYLJnHZOK_wEbyKhc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331715712</pqid></control><display><type>article</type><title>A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors</title><source>MEDLINE</source><source>Wiley Online Library</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Wiley Online Library (Online service)</source><source>JSTOR</source><creator>Prokchorchik, Maxim ; Choi, Sera ; Chung, Eui-Hwan ; Won, Kyungho ; Dangl, Jeffery L. ; Sohn, Kee Hoon</creator><creatorcontrib>Prokchorchik, Maxim ; Choi, Sera ; Chung, Eui-Hwan ; Won, Kyungho ; Dangl, Jeffery L. ; Sohn, Kee Hoon</creatorcontrib><description>• Some virulence effectors secreted from pathogens target host proteins and induce biochemical modifications that are monitored by nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Arabidopsis RIN4 protein (AtRIN4: RPM1-interacting protein 4) homologs are present in diverse plant species and targeted by several bacterial type III effector proteins including the cysteine protease AvrRpt2.
• RIN4 is ‘guarded’ by several independently evolved NLRs from various plant species, including Arabidopsis RPS2. Recently, it was shown that the MR5 NLR from a wild apple relative can recognize the AvrRpt2 effector from Erwinia amylovora, but the details of this recognition remained unclear.
• The present contribution reports the mechanism of AvrRpt2 recognition by independently evolved NLRs, MR5 from apple and RPS2, both of which require proteolytically processed RIN4 for activation. It shows that the C-terminal cleaved product of apple RIN4 (MdRIN4) but not AtRIN4 is necessary and sufficient for MR5 activation. Additionally, two polymorphic residues in AtRIN4 and MdRIN4 are identified that are crucial in the regulation of and physical association with NLRs.
• It is proposed that polymorphisms in RIN4 from distantly related plant species allow it to remain an effector target while maintaining compatibility with multiple NLRs.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16218</identifier><identifier>PMID: 31550400</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Activation ; Amino Acids - metabolism ; Apples ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - immunology ; Arabidopsis - microbiology ; Biological Evolution ; Conserved Sequence ; convergent evolution ; Cysteine ; Cysteine Proteases - metabolism ; Cysteine proteinase ; effector recognition ; Erwinia - enzymology ; Erwinia - pathogenicity ; Flowers & plants ; Homology ; Host-Pathogen Interactions ; Immune system ; Immunity ; Immunity, Innate ; Innate immunity ; Leucine ; Malus - immunology ; Malus - microbiology ; Mutation - genetics ; Nicotiana benthamiana ; NLR ; Nucleotides ; Pathogens ; plant immune receptors ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant species ; Plants, Genetically Modified ; Polymorphism, Genetic ; Protease ; Protein Domains ; Proteins ; Receptors ; Receptors, Cell Surface - metabolism ; Recognition ; RIN4 ; RIN4 protein ; Species ; Virulence</subject><ispartof>The New phytologist, 2020-02, Vol.225 (3), p.1327-1342</ispartof><rights>2019 The Authors © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</rights><rights>Copyright © 2020 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4768-b2e4e321411b3c831fbff3e1154aeefe0ad809f6795f68500bd5372e6f7977443</citedby><cites>FETCH-LOGICAL-c4768-b2e4e321411b3c831fbff3e1154aeefe0ad809f6795f68500bd5372e6f7977443</cites><orcidid>0000-0002-9021-8649 ; 0000-0003-3199-8654 ; 0000-0002-5048-8142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26928267$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26928267$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,1433,27924,27925,45574,45575,46409,46833,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31550400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prokchorchik, Maxim</creatorcontrib><creatorcontrib>Choi, Sera</creatorcontrib><creatorcontrib>Chung, Eui-Hwan</creatorcontrib><creatorcontrib>Won, Kyungho</creatorcontrib><creatorcontrib>Dangl, Jeffery L.</creatorcontrib><creatorcontrib>Sohn, Kee Hoon</creatorcontrib><title>A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• Some virulence effectors secreted from pathogens target host proteins and induce biochemical modifications that are monitored by nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Arabidopsis RIN4 protein (AtRIN4: RPM1-interacting protein 4) homologs are present in diverse plant species and targeted by several bacterial type III effector proteins including the cysteine protease AvrRpt2.
• RIN4 is ‘guarded’ by several independently evolved NLRs from various plant species, including Arabidopsis RPS2. Recently, it was shown that the MR5 NLR from a wild apple relative can recognize the AvrRpt2 effector from Erwinia amylovora, but the details of this recognition remained unclear.
• The present contribution reports the mechanism of AvrRpt2 recognition by independently evolved NLRs, MR5 from apple and RPS2, both of which require proteolytically processed RIN4 for activation. It shows that the C-terminal cleaved product of apple RIN4 (MdRIN4) but not AtRIN4 is necessary and sufficient for MR5 activation. Additionally, two polymorphic residues in AtRIN4 and MdRIN4 are identified that are crucial in the regulation of and physical association with NLRs.
• It is proposed that polymorphisms in RIN4 from distantly related plant species allow it to remain an effector target while maintaining compatibility with multiple NLRs.</description><subject>Activation</subject><subject>Amino Acids - metabolism</subject><subject>Apples</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - immunology</subject><subject>Arabidopsis - microbiology</subject><subject>Biological Evolution</subject><subject>Conserved Sequence</subject><subject>convergent evolution</subject><subject>Cysteine</subject><subject>Cysteine Proteases - metabolism</subject><subject>Cysteine proteinase</subject><subject>effector recognition</subject><subject>Erwinia - enzymology</subject><subject>Erwinia - pathogenicity</subject><subject>Flowers & plants</subject><subject>Homology</subject><subject>Host-Pathogen Interactions</subject><subject>Immune system</subject><subject>Immunity</subject><subject>Immunity, Innate</subject><subject>Innate immunity</subject><subject>Leucine</subject><subject>Malus - immunology</subject><subject>Malus - microbiology</subject><subject>Mutation - genetics</subject><subject>Nicotiana benthamiana</subject><subject>NLR</subject><subject>Nucleotides</subject><subject>Pathogens</subject><subject>plant immune receptors</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant species</subject><subject>Plants, Genetically Modified</subject><subject>Polymorphism, Genetic</subject><subject>Protease</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Recognition</subject><subject>RIN4</subject><subject>RIN4 protein</subject><subject>Species</subject><subject>Virulence</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1uFSEYhonR2GN14QVoSNzoYlr-BmaWTaPWpFEXmrgjDOfDcpyBEZhj5ja8YjmetgsT2ZCQ53344EXoOSVntK7zMN-cUclo9wBtqJB901GuHqINIaxrpJDfTtCTnHeEkL6V7DE64bRtiSBkg35f4JuYCy4mfYeCo8MGD8YWSN6M2K65gA-A5xQLmAx479MyQrCAwTmwJSY8j2bNNfYDVpziCNgHbGPYQzWGgmEfx6X4GA7yytYjH4IplZumpbrz4ZIJJ7AwV19-ih45M2Z4drufoq_v3n65vGquP73_cHlx3VihZNcMDARwRgWlA7cdp25wjgOlrTAADojZdqR3UvWtk11LyLBtuWIgneqVEoKfotdHb33czwVy0ZPPFsY6IsQla8Z6RZnsCK_oq3_QXVxSqNNpxjlVtK1kpd4cKZtizgmcnpOfTFo1JfpQlK5F6b9FVfblrXEZJtjek3fNVOD8CPzyI6z_N-mPn6_ulC-OiV2u33ifYLJnHZOK_wEbyKhc</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Prokchorchik, Maxim</creator><creator>Choi, Sera</creator><creator>Chung, Eui-Hwan</creator><creator>Won, Kyungho</creator><creator>Dangl, Jeffery L.</creator><creator>Sohn, Kee Hoon</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9021-8649</orcidid><orcidid>https://orcid.org/0000-0003-3199-8654</orcidid><orcidid>https://orcid.org/0000-0002-5048-8142</orcidid></search><sort><creationdate>202002</creationdate><title>A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors</title><author>Prokchorchik, Maxim ; Choi, Sera ; Chung, Eui-Hwan ; Won, Kyungho ; Dangl, Jeffery L. ; Sohn, Kee Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4768-b2e4e321411b3c831fbff3e1154aeefe0ad809f6795f68500bd5372e6f7977443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation</topic><topic>Amino Acids - metabolism</topic><topic>Apples</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - immunology</topic><topic>Arabidopsis - microbiology</topic><topic>Biological Evolution</topic><topic>Conserved Sequence</topic><topic>convergent evolution</topic><topic>Cysteine</topic><topic>Cysteine Proteases - metabolism</topic><topic>Cysteine proteinase</topic><topic>effector recognition</topic><topic>Erwinia - enzymology</topic><topic>Erwinia - pathogenicity</topic><topic>Flowers & plants</topic><topic>Homology</topic><topic>Host-Pathogen Interactions</topic><topic>Immune system</topic><topic>Immunity</topic><topic>Immunity, Innate</topic><topic>Innate immunity</topic><topic>Leucine</topic><topic>Malus - immunology</topic><topic>Malus - microbiology</topic><topic>Mutation - genetics</topic><topic>Nicotiana benthamiana</topic><topic>NLR</topic><topic>Nucleotides</topic><topic>Pathogens</topic><topic>plant immune receptors</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant species</topic><topic>Plants, Genetically Modified</topic><topic>Polymorphism, Genetic</topic><topic>Protease</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Recognition</topic><topic>RIN4</topic><topic>RIN4 protein</topic><topic>Species</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prokchorchik, Maxim</creatorcontrib><creatorcontrib>Choi, Sera</creatorcontrib><creatorcontrib>Chung, Eui-Hwan</creatorcontrib><creatorcontrib>Won, Kyungho</creatorcontrib><creatorcontrib>Dangl, Jeffery L.</creatorcontrib><creatorcontrib>Sohn, Kee Hoon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prokchorchik, Maxim</au><au>Choi, Sera</au><au>Chung, Eui-Hwan</au><au>Won, Kyungho</au><au>Dangl, Jeffery L.</au><au>Sohn, Kee Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2020-02</date><risdate>2020</risdate><volume>225</volume><issue>3</issue><spage>1327</spage><epage>1342</epage><pages>1327-1342</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• Some virulence effectors secreted from pathogens target host proteins and induce biochemical modifications that are monitored by nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Arabidopsis RIN4 protein (AtRIN4: RPM1-interacting protein 4) homologs are present in diverse plant species and targeted by several bacterial type III effector proteins including the cysteine protease AvrRpt2.
• RIN4 is ‘guarded’ by several independently evolved NLRs from various plant species, including Arabidopsis RPS2. Recently, it was shown that the MR5 NLR from a wild apple relative can recognize the AvrRpt2 effector from Erwinia amylovora, but the details of this recognition remained unclear.
• The present contribution reports the mechanism of AvrRpt2 recognition by independently evolved NLRs, MR5 from apple and RPS2, both of which require proteolytically processed RIN4 for activation. It shows that the C-terminal cleaved product of apple RIN4 (MdRIN4) but not AtRIN4 is necessary and sufficient for MR5 activation. Additionally, two polymorphic residues in AtRIN4 and MdRIN4 are identified that are crucial in the regulation of and physical association with NLRs.
• It is proposed that polymorphisms in RIN4 from distantly related plant species allow it to remain an effector target while maintaining compatibility with multiple NLRs.</abstract><cop>England</cop><pub>Wiley</pub><pmid>31550400</pmid><doi>10.1111/nph.16218</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9021-8649</orcidid><orcidid>https://orcid.org/0000-0003-3199-8654</orcidid><orcidid>https://orcid.org/0000-0002-5048-8142</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2020-02, Vol.225 (3), p.1327-1342 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_2297126803 |
source | MEDLINE; Wiley Online Library; Free E-Journal (出版社公開部分のみ); Wiley Online Library (Online service); JSTOR |
subjects | Activation Amino Acids - metabolism Apples Arabidopsis Arabidopsis - genetics Arabidopsis - immunology Arabidopsis - microbiology Biological Evolution Conserved Sequence convergent evolution Cysteine Cysteine Proteases - metabolism Cysteine proteinase effector recognition Erwinia - enzymology Erwinia - pathogenicity Flowers & plants Homology Host-Pathogen Interactions Immune system Immunity Immunity, Innate Innate immunity Leucine Malus - immunology Malus - microbiology Mutation - genetics Nicotiana benthamiana NLR Nucleotides Pathogens plant immune receptors Plant Proteins - chemistry Plant Proteins - genetics Plant Proteins - metabolism Plant species Plants, Genetically Modified Polymorphism, Genetic Protease Protein Domains Proteins Receptors Receptors, Cell Surface - metabolism Recognition RIN4 RIN4 protein Species Virulence |
title | A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20host%20target%20of%20a%20bacterial%20cysteine%20protease%20virulence%20effector%20plays%20a%20key%20role%20in%20convergent%20evolution%20of%20plant%20innate%20immune%20system%20receptors&rft.jtitle=The%20New%20phytologist&rft.au=Prokchorchik,%20Maxim&rft.date=2020-02&rft.volume=225&rft.issue=3&rft.spage=1327&rft.epage=1342&rft.pages=1327-1342&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16218&rft_dat=%3Cjstor_proqu%3E26928267%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331715712&rft_id=info:pmid/31550400&rft_jstor_id=26928267&rfr_iscdi=true |